On Algebras with Effectful Iteration

被引:1
作者
Milius, Stefan [2 ]
Adamek, Jiri [1 ]
Urbat, Henning [2 ]
机构
[1] Czech Tech Univ, Prague, Czech Republic
[2] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen, Germany
来源
COALGEBRAIC METHODS IN COMPUTER SCIENCE (CMCS 2018) | 2018年 / 11202卷
关键词
THEOREM;
D O I
10.1007/978-3-030-00389-0_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For every finitary monad T on sets and every endofunctor F on the category of T-algebras we introduce the concept of an ffg-Elgot algebra for F, that is, an algebra admitting coherent solutions for finite systems of recursive equations with effects represented by the monad T. The goal of this paper is to study the existence and construction of free ffg-Elgot algebras. To this end, we investigate the locally ffg fixed point rho F, the colimit of all F-coalgebras with free finitely generated carrier, which is shown to be the initial ffg-Elgot algebra. This is the technical foundation for our main result: the category of ffg-Elgot algebras is monadic over the category of T-algebras.
引用
收藏
页码:144 / 166
页数:23
相关论文
共 34 条
  • [1] Adámek J, 2010, THEOR APPL CATEG, V23, P251
  • [2] Adamek J., 1994, LMS LECT NOTE SERIES
  • [3] Adamek J., 2011, ALGEBRAIC THEORIES
  • [4] Iterative algebras at work
    Adamek, Jiri
    Milius, Stefan
    Velebil, Jiri
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2006, 16 (06) : 1085 - 1131
  • [5] SEMANTICS OF HIGHER-ORDER RECURSION SCHEMES
    Adamek, Jiri
    Milius, Stefan
    Velebil, Jiri
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (01)
  • [6] ELGOT ALGEBRAS
    Adamek, Jiri
    Milius, Stefan
    Velebil, Jiri
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2006, 2 (05)
  • [7] [Anonymous], 2010, P LICS 10
  • [8] Applegate H, 1965, THESIS
  • [9] COEQUALIZERS AND FREE TRIPLES
    BARR, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (04) : 307 - &
  • [10] Sound and Complete Axiomatizations of Coalgebraic Language Equivalence
    Bonsangue, Marcello M.
    Milius, Stefan
    Silva, Alexandra
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (01)