Modeling of Precipitable Water Vapor Using an Adaptive Neuro-Fuzzy Inference System in the Absence of the GPS Network

被引:10
作者
Suparta, Wayan [1 ]
Alhasa, Kemal Maulana [1 ]
机构
[1] Univ Kebangsaan Malaysia, Space Sci Ctr ANGKASA, Inst Climate Change, Bangi, Selangor Darul, Malaysia
关键词
LOCAL INFORMATION; CLIMATE-CHANGE; HONG-KONG; RADIOSONDE; ANFIS; METEOROLOGY; PREDICTION; EVALUATE; WVR;
D O I
10.1175/JAMC-D-15-0161.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper constructs an adaptive neuro-fuzzy inference system (ANFIS) model to estimate precipitable water vapor (PWV) in Southeast Asia, particularly in the Peninsular Malaysia, Sabah, and Singapore region. The input to the model is developed using the surface pressure, temperature, and relative humidity. The models are trained and tested using PWV values derived from the global positioning system (GPS). The data used are for May 2012 taken at the Nanyang Technology University of Singapore (NTUS) and Universiti Malaysia Sabah, Kinabalu (UMSK); and for February 2009 taken at the Universiti Kebangsaan Malaysia Bangi (UKMB). The validation process is conducted using June 2012 data for NTUS and UMSK and March 2009 data for UKMB. The performance the ANFIS model is compared with a multilayer perceptron (MLP), Elman neural networks, and multiple linear regression (MLR) models. Results from validations at the three stations showed that the ANFIS model performed well as compared with MLP, Elman neural networks, and MLR, with a mean absolute error of 0.015 mm, a percent error of 0.028%, and root-mean-square error of 0.019 mm. These results suggest that the ANFIS model is a promising approach for estimating PWV values that is cost effective, continuous, and potentially useful for meteorological applications.
引用
收藏
页码:2283 / 2300
页数:18
相关论文
共 50 条
[21]   Reliability Modeling Using an Adaptive Neuro-Fuzzy Inference System: Gas Turbine Application [J].
Hadroug, Nadji ;
Hafaifa, Ahmed ;
Iratni, Abdelhamid ;
Guemana, Mouloud .
FUZZY INFORMATION AND ENGINEERING, 2021, 13 (02) :154-183
[22]   Modeling of waste brine nanofiltration process using artificial neural network and adaptive neuro-fuzzy inference system [J].
Salehi, Fakhreddin ;
Razavi, Seyed M. A. .
DESALINATION AND WATER TREATMENT, 2016, 57 (31) :14369-14378
[23]   Modeling agricultural soil bulk density using artificial neural network and adaptive neuro-fuzzy inference system [J].
Yousef Abbaspour-Gilandeh ;
Mohammadreza Abbaspour-Gilandeh ;
Hassan A. Babaie ;
Gholamhossein Shahgoli .
Earth Science Informatics, 2023, 16 :57-65
[24]   Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing [J].
Foorginejad, Abolfazl ;
Azargoman, Majid ;
Mollayi, Nader ;
Taheri, Morteza .
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 (01) :160-170
[25]   LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) [J].
Choi, J. ;
Lee, Y. K. ;
Lee, M. J. ;
Kim, K. ;
Park, Y. ;
Kim, S. ;
Goo, S. ;
Cho, M. ;
Sim, J. ;
Won, J. S. .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :1989-1992
[26]   Swelling Prediction in Compacted Soils Using Adaptive Neuro-Fuzzy Inference System [J].
Jokar, Mehdi Hashemi ;
Mirassi, Sohrab ;
Mahboubi, Meisam .
JORDAN JOURNAL OF CIVIL ENGINEERING, 2023, 17 (01) :97-106
[27]   Evolutionary algorithm in adaptive neuro-fuzzy inference system for modeling growth of foodborne fungi [J].
Chen, Yenming J. ;
Ho, Wen-Hsien .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) :1033-1039
[28]   A Proposal of an Adaptive Neuro-Fuzzy Inference System for Modeling Experimental Data in Manufacturing Engineering [J].
Luis Perez, C. J. .
MATHEMATICS, 2020, 8 (09)
[29]   FORECASTING THE RAINFALL DATA BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM [J].
Yarar, Alpaslan ;
Onucyildiz, Mustafa ;
Sevimli, M. Faik .
SGEM 2009: 9TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, VOL II, CONFERENCE PROCEEDING: MODERN MANAGEMENT OF MINE PRODUCING, GEOLOGY AND ENVIRONMENTAL PROTECTION, 2009, :191-+
[30]   Reservoir fluid PVT properties modeling using Adaptive Neuro-Fuzzy Inference Systems [J].
Ganji-Azad, Ehsan ;
Rafiee-Taghanaki, Shahin ;
Rezaei, Hojjat ;
Arabloo, Milad ;
Zamani, Hossein Ali .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2014, 21 :951-961