Sentiment Analysis Applied to Analyze Society's Emotion in Two Different Context of Social Media Data

被引:1
作者
Ibanez, Marilyn Minicucci [1 ,2 ]
Rosa, Reinaldo Roberto [1 ,3 ]
Guimardes, Lamartine N. F. [1 ,4 ,5 ]
机构
[1] Natl Inst Space Res, Appl Comp Grad Program CAP, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Fed Inst Sao Paulo IFSP SJC, BR-12223201 Sao Jose Dos Campos, SP, Brazil
[3] Natl Inst Space Res, Lab Comp & Appl Math LABAC, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[4] Inst Adv Studies IEAv, Nucl Energy Div ENU, BR-12228001 Sao Jose Dos Campos, SP, Brazil
[5] Inst Tecnol Aeronaut ITA, Space & Technol Sci Grad Program PG CTE, BR-12228900 Sao Jose Dos Campos, SP, Brazil
来源
INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE | 2020年 / 23卷 / 66期
基金
巴西圣保罗研究基金会;
关键词
Machine Learning; Deep Learning; Auto-encoder; Natural Language Processing; Sentiment Analysis; Social Media;
D O I
10.4114/submission/intartif.vol23iss66pp66-84
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last few decades, the growth in the use of the Internet has generated a substantial increase in the circulation of information on social media. Due to the high interest of several areas of society in the analysis of these data, a study of better techniques for the manipulation and understanding of this type of data is of great importance so that this enormous volume of information can be interpreted quickly and accurately. Based on this context, this study shows two approaches of sentiment analysis to verify the emotion of the population in different context. The first approach analyses the positive and negative sentiment about 2018 presidential elections in Brazil considering data from the Twitter social network. The second approach performs analysis of data from social media to identify threats sentiment level of armed conflicts considering data off the conflict between Syria and the USA in 2017. To achieve this goal, machine learning techniques such as auto-encoder and deep learning will be considered in conjunction with NLP text analysis techniques. The results obtained show the effectiveness of the approaches used in the classification of sentiment within the domains used according to the methodology developed for this work.
引用
收藏
页码:66 / 84
页数:19
相关论文
共 33 条
[1]  
Ali A. E., 2018, MEASURING UNDERSTAND
[2]  
[Anonymous], 2019, The Guardian
[3]  
[Anonymous], 2019, REUTERS
[4]   Social media monitoring: The Dengue e-Monitor [J].
Antunes, Michele Nacif ;
da Silva, Cicera Henrique ;
Soares Guimaraes, Maria Cristina ;
Leoni Rabaco, Marcelo Henrique .
TRANSINFORMACAO, 2014, 26 (01) :9-18
[5]  
Arunachalam R., 2013, P IJCNLP 2013 WORKSH, P23
[6]  
Balabantaray RC., 2012, International Journal of Applied Information Systems, V4, P48
[7]  
Bird S, 2009, Natural language processing with Python, V1st
[8]  
Blitzer J., 2006, Proc. Of the Conference on Empirical Methods in Natural Language Processing, P120
[9]  
CEPIK M., 2003, Espionagem e democracia: agilidade e transparencia como dilemas na institucionalizacao de servicos de inteligencia
[10]  
Chollet F, 2015, Keras: The Python Deep Learning library