Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities

被引:15
作者
Lian, Hong-Yuan [1 ]
Dutta, Saikat [1 ]
Tominaka, Satoshi [2 ]
Lee, Yu-An [3 ]
Huang, Shu-Yun [4 ]
Sakamoto, Yasuhiro [5 ]
Hou, Chia-Hung [4 ]
Liu, Wei-Ren [3 ]
Henzie, Joel [2 ]
Yamauchi, Yusuke [2 ,6 ,7 ,8 ]
Wu, Kevin C. -W. [1 ,9 ,10 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 320, Taiwan
[4] Natl Taiwan Univ, Grad Inst Environm Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[5] Tohoku Univ, Polymer Phys & Chem, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[6] Kyung Hee Univ, Dept Plant & Environm New Resources, 1732 Deogyeong Daero, Yongin 446701, Gyeonggi Do, South Korea
[7] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[8] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[9] Natl Taiwan Univ, Ctr Atom Initiat New Mat AI MAT, Taipei 10617, Taiwan
[10] Natl Taiwan Univ NTU MST, Int Grad Program Mol Sci & Technol, Taipei 10617, Taiwan
关键词
capacitive deionization; charging capacity; curved graphene; porous carbon; X-ray pair distribution; LI-ION BATTERY; PAIR DISTRIBUTION FUNCTION; POROUS CARBON; QUANTUM DOTS; LITHIUM; DEIONIZATION; SUPERCAPACITOR; PERFORMANCE; DESALINATION; ELECTRODES;
D O I
10.1002/smll.201702054
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well-defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium-ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g(-1)), with great rate capability (248 mAh g(-1) at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g(-1) in 0.5 x 10(-3)m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.
引用
收藏
页数:9
相关论文
共 67 条
[31]   Graphene-Based Supercapacitor with an Ultrahigh Energy Density [J].
Liu, Chenguang ;
Yu, Zhenning ;
Neff, David ;
Zhamu, Aruna ;
Jang, Bor Z. .
NANO LETTERS, 2010, 10 (12) :4863-4868
[32]   Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes [J].
Liu, Jinyun ;
Zheng, Qiye ;
Goodman, Matthew D. ;
Zhu, Haoyue ;
Kim, Jinwoo ;
Krueger, Neil A. ;
Ning, Hailong ;
Huang, Xingjiu ;
Liu, Jinhuai ;
Terrones, Mauricio ;
Braun, Paul V. .
ADVANCED MATERIALS, 2016, 28 (35) :7696-+
[33]   Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization [J].
Liu, Lianjun ;
Guo, Xiaoru ;
Tallon, Rebecca ;
Huang, Xingkang ;
Chen, Junhong .
CHEMICAL COMMUNICATIONS, 2017, 53 (05) :881-884
[34]   Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets [J].
Liu, Wenwen ;
Yan, Xingbin ;
Lang, Junwei ;
Xue, Qunji .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (18) :8853-8861
[35]   Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors [J].
Long, Conglai ;
Chen, Xu ;
Jiang, Lili ;
Zhi, Linjie ;
Fan, Zhuangjun .
NANO ENERGY, 2015, 12 :141-151
[36]   A review of advanced and practical lithium battery materials [J].
Marom, Rotem ;
Amalraj, S. Francis ;
Leifer, Nicole ;
Jacob, David ;
Aurbach, Doron .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9938-9954
[37]   Particulate-free porous silicon networks for efficient capacitive deionization water desalination [J].
Metke, Thomas ;
Westover, Andrew S. ;
Carter, Rachel ;
Oakes, Landon ;
Douglas, Anna ;
Pint, Cary L. .
SCIENTIFIC REPORTS, 2016, 6
[38]   Remarkably stable high power Li-ion battery anodes based on vertically arranged multilayered-graphene [J].
Nair, Jijeesh R. ;
Rius, Gemma ;
Jagadale, Pravin ;
Destro, Matteo ;
Tortello, Mauro ;
Yoshimura, Masamichi ;
Tagliaferro, Alberto ;
Gerbaldi, Claudio .
ELECTROCHIMICA ACTA, 2015, 182 :500-506
[39]   Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries [J].
Ning, Hailong ;
Pikul, James H. ;
Zhang, Runyu ;
Li, Xuejiao ;
Xu, Sheng ;
Wang, Junjie ;
Rogers, John A. ;
King, William P. ;
Braun, Paul V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (21) :6573-6578
[40]   Molecular level distribution of black phosphorus quantum dots on nitrogen doped graphene nanosheets for superior lithium storage [J].
Pan, Long ;
Zhu, Xiao-Dong ;
Sung, Ke-Ning ;
Liu, Yi-Tao ;
Xie, Xu-Ming ;
Ye, Xiong-Ying .
NANO ENERGY, 2016, 30 :347-354