Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities

被引:15
作者
Lian, Hong-Yuan [1 ]
Dutta, Saikat [1 ]
Tominaka, Satoshi [2 ]
Lee, Yu-An [3 ]
Huang, Shu-Yun [4 ]
Sakamoto, Yasuhiro [5 ]
Hou, Chia-Hung [4 ]
Liu, Wei-Ren [3 ]
Henzie, Joel [2 ]
Yamauchi, Yusuke [2 ,6 ,7 ,8 ]
Wu, Kevin C. -W. [1 ,9 ,10 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 320, Taiwan
[4] Natl Taiwan Univ, Grad Inst Environm Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[5] Tohoku Univ, Polymer Phys & Chem, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[6] Kyung Hee Univ, Dept Plant & Environm New Resources, 1732 Deogyeong Daero, Yongin 446701, Gyeonggi Do, South Korea
[7] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[8] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[9] Natl Taiwan Univ, Ctr Atom Initiat New Mat AI MAT, Taipei 10617, Taiwan
[10] Natl Taiwan Univ NTU MST, Int Grad Program Mol Sci & Technol, Taipei 10617, Taiwan
关键词
capacitive deionization; charging capacity; curved graphene; porous carbon; X-ray pair distribution; LI-ION BATTERY; PAIR DISTRIBUTION FUNCTION; POROUS CARBON; QUANTUM DOTS; LITHIUM; DEIONIZATION; SUPERCAPACITOR; PERFORMANCE; DESALINATION; ELECTRODES;
D O I
10.1002/smll.201702054
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well-defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium-ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g(-1)), with great rate capability (248 mAh g(-1) at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g(-1) in 0.5 x 10(-3)m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.
引用
收藏
页数:9
相关论文
共 67 条
[21]   Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries [J].
Ji, Heng-Xing ;
Wu, Xing-Long ;
Fan, Li-Zhen ;
Krien, Cornelia ;
Fiering, Irina ;
Guo, Yu-Guo ;
Mei, Yongfeng ;
Schmidt, Oliver G. .
ADVANCED MATERIALS, 2010, 22 (41) :4591-4595
[22]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193
[23]   First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries [J].
Kim, Ki Chul ;
Liu, Tianyuan ;
Lee, Seung Woo ;
Jang, Seung Soon .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2374-2382
[24]   Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes [J].
Kim, Ki-Seok ;
Park, Soo-Jin .
ELECTROCHIMICA ACTA, 2011, 56 (03) :1629-1635
[25]  
Kim SJ, 2010, NAT NANOTECHNOL, V5, P297, DOI [10.1038/nnano.2010.34, 10.1038/NNANO.2010.34]
[26]   Self-Assembly of Monodisperse Starburst Carbon Spheres into Hierarchically Organized Nanostructured Supercapacitor Electrodes [J].
Kim, Sung-Kon ;
Jung, Euiyeon ;
Goodman, Matthew D. ;
Schweizer, Kenneth S. ;
Tatsuda, Narihito ;
Yano, Kazuhisa ;
Braun, Paul V. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (17) :9128-9133
[27]   The planar electric double layer capacitance for the solvent primitive model electrolyte [J].
Lamperski, Stanislaw ;
Pluciennika, Monika ;
Outhwaite, Christopher W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) :928-932
[28]   Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques [J].
Lee, Jaehan ;
Kim, Seoni ;
Kim, Choonsoo ;
Yoon, Jeyong .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3683-3689
[29]   Novel Graphene-Like Electrodes for Capacitive Deionization [J].
Li, Haibo ;
Zou, Linda ;
Pan, Likun ;
Sun, Zhuo .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (22) :8692-8697
[30]   Carbon quantum dots and their applications [J].
Lim, Shi Ying ;
Shen, Wei ;
Gao, Zhiqiang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (01) :362-381