Dynamics of interacting dark soliton stripes

被引:6
|
作者
Kevrekidis, P. G. [1 ]
Wang, Wenlong [2 ]
Theocharis, G. [3 ]
Frantzeskakis, D. J. [4 ]
Carretero-Gonzalez, R. [5 ,6 ]
Anderson, B. P. [7 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Royal Inst Technol, Dept Theoret Phys, SE-10691 Stockholm, Sweden
[3] Univ Maine, UMR CNRS 6613, Lab Acoust, Ave Olivier Messiaen, F-72000 Le Mans, France
[4] Natl & Kapodistrian Univ Athens, Dept Phys, Athens 15784, Greece
[5] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[6] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
基金
瑞典研究理事会;
关键词
RING DARK; GENERATION; OSCILLATIONS; INSTABILITY; EQUATION; ENVELOPE;
D O I
10.1103/PhysRevA.100.033607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the present work we examine the statics and dynamics of multiple parallel dark soliton stripes in a two-dimensional Bose-Einstein condensate. Our principal goal is to study the effect of the interaction between the stripes on the transverse instability of the individual stripes. The cases of two-, three-, and four-stripe states are studied in detail. We use a recently developed adiabatic invariant formulation to derive a quasianalytical prediction for the stripe equilibrium position and for the Bogoliubov-de Gennes spectrum of excitations of stationary stripes. We subsequently test our predictions against numerical simulations of the full two-dimensional Gross-Pitaevskii equation. We find that the number of unstable eigenmodes increases as the number of stripes increases due to (unstable) relative motions between the stripes. Their corresponding growth rates do not significantly change, although for large chemical potentials, the larger the stripe number, the larger the maximal instability growth rate. The instability induced dynamics of multiple stripe states and their decay into vortices are also investigated.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] OPTICAL VORTEX SOLITONS AND THE STABILITY OF DARK SOLITON STRIPES
    LAW, CT
    SWARTZLANDER, GA
    OPTICS LETTERS, 1993, 18 (08) : 586 - 588
  • [2] Observation of vortex solitons created by the instability of dark soliton stripes
    Laser Physics Center, Australian National University, Canberra, ACT 0200, Australia
    Opt. Lett., 15 (1129-1131):
  • [4] Observation of vortex solitons created by the instability of dark soliton stripes
    Tikhonenko, V
    Christou, J
    LutherDavies, B
    Kivshar, YS
    OPTICS LETTERS, 1996, 21 (15) : 1129 - 1131
  • [5] Reduced dynamics for one and two dark soliton stripes in the defocusing nonlinear Schrodinger equation: A variational approach
    Cisneros-Ake, L. A.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [6] Oblique interaction of spatial dark-soliton stripes in nonlocal media
    Fischer, Robert
    Neshev, Dragomir N.
    Krolikowski, Wieslaw
    Kivshar, Yuri S.
    Iturbe-Castillo, David
    Chavez-Cerda, Sabino
    Meneghetti, Mario R.
    Caetano, Dilson P.
    Hickman, Jandir M.
    OPTICS LETTERS, 2006, 31 (20) : 3010 - 3012
  • [7] Dark-soliton stripes on a paraboloidal background in a bulk nonlinear medium
    Zhao, Xuesong
    Li, Lu
    Xu, Zhiyong
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [8] Dynamics of interacting dark energy
    Caldera-Cabral, Gabriela
    Maartens, Roy
    Arturo Urena-Lopez, L.
    PHYSICAL REVIEW D, 2009, 79 (06)
  • [9] Dynamics of interacting dark energy
    Caldera-Cabral, Gabriela
    Maartens, Roy
    Arturo Urena-Lopez, L.
    INVISIBLE UNIVERSE INTERNATIONAL CONFERENCE, 2010, 1241 : 741 - 748
  • [10] SPATIAL DARK-SOLITON STRIPES AND GRIDS IN SELF-DEFOCUSING MATERIALS
    SWARTZLANDER, GA
    ANDERSEN, DR
    REGAN, JJ
    YIN, H
    KAPLAN, AE
    PHYSICAL REVIEW LETTERS, 1991, 66 (12) : 1583 - 1586