Synchronization in starlike networks of phase oscillators

被引:23
作者
Xu, Can [1 ,2 ]
Gao, Jian [3 ]
Boccaletti, Stefano [4 ,5 ]
Zheng, Zhigang [1 ,2 ]
Guan, Shuguang [6 ]
机构
[1] Huaqiao Univ, Inst Syst Sci, Xiamen 361021, Fujian, Peoples R China
[2] Huaqiao Univ, Coll Informat Sci & Engn, Xiamen 361021, Fujian, Peoples R China
[3] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, POB 407, NL-9700 AK Groningen, Netherlands
[4] CNR, Inst Complex Syst, Via Madonna Piano 10, I-50019 Florence, Italy
[5] Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Shaanxi, Peoples R China
[6] East China Normal Univ, Dept Phys, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Synchronization;
D O I
10.1103/PhysRevE.100.012212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We fully describe the mechanisms underlying synchronization in starlike networks of phase oscillators. In particular, the routes to synchronization and the critical points for the associated phase transitions are determined analytically. In contrast to the classical Kuramoto theory, we unveil that relaxation rates to each equilibrium state indeed exist and remain invariant under three levels of descriptions corresponding to different geometric implications. The special symmetry in the coupling determines a quasi-Hamiltonian property, which is further unveiled on the basis of singular perturbation theory. Since starlike coupling configurations constitute the building blocks of technological and biological real world networks, our paper paves the way towards the understanding of the functioning of such real world systems in many practical situations.
引用
收藏
页数:8
相关论文
共 39 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [3] Boccaletti S, 2018, Synchronization: from coupled systems to complex networks
  • [4] Winner-take-all in a phase oscillator system with adaptation
    Burylko, Oleksandr
    Kazanovich, Yakov
    Borisyuk, Roman
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [5] Bifurcations in phase oscillator networks with a central element
    Burylko, Oleksandr
    Kazanovich, Yakov
    Borisyuk, Roman
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (12) : 1072 - 1089
  • [6] Neuronal oscillations in cortical networks
    Buzsáki, G
    Draguhn, A
    [J]. SCIENCE, 2004, 304 (5679) : 1926 - 1929
  • [7] Stability of splay states in globally coupled rotators
    Calamai, Massimo
    Politi, Antonio
    Torcini, Alessandro
    [J]. PHYSICAL REVIEW E, 2009, 80 (03):
  • [8] Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
  • [9] Critical phenomena in complex networks
    Dorogovtsev, S. N.
    Goltsev, A. V.
    Mendes, J. F. F.
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (04) : 1275 - 1335
  • [10] Modeling walker synchronization on the Millennium Bridge
    Eckhardt, Bruno
    Ott, Edward
    Strogatz, Steven H.
    Abrams, Daniel M.
    McRobie, Allan
    [J]. PHYSICAL REVIEW E, 2007, 75 (02):