Nα-terminal acetylation of proteins by NatA and NatB serves distinct physiological roles in Saccharomyces cerevisiae

被引:25
作者
Friedrich, Ulrike Anne [1 ,2 ]
Zedan, Mostafa [1 ,2 ]
Hessling, Bernd [1 ,2 ]
Fenzl, Kai [1 ,2 ]
Gillet, Ludovic [3 ]
Barry, Joseph [4 ]
Knop, Michael [1 ,2 ]
Kramer, Guenter [1 ,2 ]
Bukau, Bernd [1 ,2 ]
机构
[1] Heidelberg Univ ZMBH, Ctr Mol Biol, D-69120 Heidelberg, Germany
[2] German Canc Res Ctr, DKFZ ZMBH Alliance, D-69120 Heidelberg, Germany
[3] Swiss Fed Inst Technol, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[4] European Mol Biol Lab EMBL, D-69117 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
FLUORESCENT PROTEINS; QUALITY-CONTROL; GTPASE ARL3P; ARD1; GENE; YEAST; ACETYLTRANSFERASE; DEGRADATION; EXPRESSION; IDENTIFICATION; PROTEOME;
D O I
10.1016/j.celrep.2021.108711
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
N-terminal (Nt) acetylation is a highly prevalent co-translational protein modification in eukaryotes, catalyzed by at least five Nt acetyltransferases (Nats) with differing specificities. Nt acetylation has been implicated in protein quality control, but its broad biological significance remains elusive. We investigate the roles of the two major Nats of S. cerevisiae, NatA and NatB, by performing transcriptome, translatome, and proteome profiling of natA Delta and natB Delta mutants. Our results reveal a range of NatA- and NatB-specific phenotypes. NatA is implicated in systemic adaptation control, because natA Delta mutants display altered expression of transposons, sub-telomeric genes, pheromone response genes, and nuclear genes encoding mitochondrial ribosomal proteins. NatB predominantly affects protein folding, because natB Delta mutants, to a greater extent than natA mutants, accumulate protein aggregates, induce stress responses, and display reduced fitness in the absence of the ribosome-associated chaperone Ssb. These phenotypic differences indicate that controlling Nat activities may serve to elicit distinct cellular responses.
引用
收藏
页数:23
相关论文
共 84 条
[71]   mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry [J].
Teo, Guoshou ;
Kim, Sinae ;
Tsou, Chih-Chiang ;
Collins, Ben ;
Gingras, Anne-Claude ;
Nesvizhskii, Alexey I. ;
Choi, Hyungwon .
JOURNAL OF PROTEOMICS, 2015, 129 :108-120
[72]  
Tyanova S, 2016, NAT METHODS, V13, P731, DOI [10.1038/NMETH.3901, 10.1038/nmeth.3901]
[73]   TheCellMap. org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network [J].
Usaj, Matej ;
Tan, Yizhao ;
Wang, Wen ;
VanderSluis, Benjamin ;
Zou, Albert ;
Myers, Chad L. ;
Costanzo, Michael ;
Andrews, Brenda ;
Boone, Charles .
G3-GENES GENOMES GENETICS, 2017, 7 (05) :1539-1549
[74]   A Saccharomyces cerevisiae Model Reveals In Vivo Functional Impairment of the Ogden Syndrome N-Terminal Acetyltransferase NAA10 Ser37Pro Mutant [J].
Van Damme, Petra ;
Stove, Svein I. ;
Glomnes, Nina ;
Gevaert, Kris ;
Arnesen, Thomas .
MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (08) :2031-2041
[75]   N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB [J].
Van Damme, Petra ;
Lasa, Marta ;
Polevoda, Bogdan ;
Gazquez, Cristina ;
Elosegui-Artola, Alberto ;
Kim, Duk Soo ;
De Juan-Pardo, Elena ;
Demeyer, Kimberly ;
Hole, Kristine ;
Larrea, Esther ;
Timmerman, Evy ;
Prieto, Jesus ;
Arnesen, Thomas ;
Sherman, Fred ;
Gevaert, Kris ;
Aldabe, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (31) :12449-12454
[76]   Protein alpha-N-acetylation studied by N-terminomics [J].
Van Damme, Petra ;
Arnesen, Thomas ;
Gevaert, Kris .
FEBS JOURNAL, 2011, 278 (20) :3822-3834
[77]   NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation [J].
Van Damme, Petra ;
Hole, Kristine ;
Pimenta-Marques, Ana ;
Helsens, Kenny ;
Vandekerckhove, Joel ;
Martinho, Rui G. ;
Gevaert, Kris ;
Arnesen, Thomas .
PLOS GENETICS, 2011, 7 (07)
[78]   N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae [J].
Varland, Sylvia ;
Aksnes, Henriette ;
Kryuchkov, Fedor ;
Impens, Francis ;
Van Haver, Delphi ;
Jonckheere, Veronique ;
Ziegler, Mathias ;
Gevaert, Kris ;
Van Damme, Petra ;
Arnesen, Thomas .
MOLECULAR & CELLULAR PROTEOMICS, 2018, 17 (12) :2309-2323
[79]   Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing [J].
Wang, XR ;
Connelly, JJ ;
Wang, CL ;
Sternglanz, R .
GENETICS, 2004, 168 (01) :547-551
[80]   Structural basis of HypK regulating N-terminal acetylation by the NatA complex [J].
Weyer, Felix Alexander ;
Gumiero, Andrea ;
Lapouge, Karine ;
Bange, Gert ;
Kopp, Juergen ;
Sinning, Irmgard .
NATURE COMMUNICATIONS, 2017, 8