Complex Dynamics in a Memristive Diode Bridge-Based MLC Circuit: Coexisting Attractors and Double-Transient Chaos

被引:22
作者
Chithra, A. [1 ]
Fozin, T. Fonzin [2 ,3 ]
Srinivasan, K. [4 ]
Kengne, E. R. Mache [5 ]
Kouanou, A. Tchagna [3 ,6 ]
Mohamed, I. Raja [1 ]
机构
[1] BS Abdur Rahman Crescent Inst Sci & Technol, Chennai, Tamil Nadu, India
[2] Univ Buea, Fac Engn & Technol FET, Dept Elect & Elect Engn, POB 63, Buea, Cameroon
[3] InchTechs Sarl, Dept Training Res & Innovat, Yaounde, Cameroon
[4] Nehru Mem Coll, Dept Phys, POB 621 007, Tiruchirapalli, India
[5] Univ Dschang, Fac Sci, Dept Phys, Unite Rech Matiere Condensee Elect & Traitement S, POB 67, Dschang, Cameroon
[6] Univ Buea, Coll Technol COT, Dept Elect & Elect Engn, POB 63, Buea, Cameroon
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 03期
关键词
Memristive MLC circuit; bifurcation and chaos; coexisting attractors; double-transient chaos; HIDDEN EXTREME MULTISTABILITY; MULTIPLE ATTRACTORS; CRISIS ROUTE; BIFURCATIONS; OSCILLATOR; DEVICES; SYSTEMS; DESIGN;
D O I
10.1142/S0218127421500498
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper uncovers some striking and new complex phenomena in a memristive diode bridge-based Murali-Lakshmanan-Chua (MLC) circuit. These striking dynamical behaviors include the coexistence of multiple attractors and double-transient chaos. Also, period-doubling, chaos, crisis scenarios are observed in the system when varying the amplitude of the external excitation. Numerical simulation tools like phase portrait, cross-section basin of attraction, Lyapunov spectrum, bifurcation diagrams and time series are used to highlight the complex dynamical behaviors in the memristive system. Further, practical realizations of the circuit both in PSpice and real-laboratory measurements match well with the observed numerical simulations.
引用
收藏
页数:17
相关论文
共 62 条
[11]   A GALLERY OF CHAOTIC OSCILLATORS BASED ON HP MEMRISTOR [J].
Buscarino, Arturo ;
Fortuna, Luigi ;
Frasca, Mattia ;
Gambuzza, Lucia Valentina .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05)
[12]   Inductorless realization of nonautonomous MLC chaotic circuit using current-feedback operational amplifiers [J].
Çam, U ;
Kiliç, R .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2005, 14 (01) :99-107
[13]   Using multiple attractor chaotic systems for communication [J].
Carroll, TL ;
Pecora, LM .
CHAOS, 1999, 9 (02) :445-451
[14]   Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit [J].
Chen, Mo ;
Qi, JianWei ;
Wu, HuaGan ;
Xu, Quan ;
Bao, BoCheng .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (06) :1035-1044
[15]   MEMRISTIVE DEVICES AND SYSTEMS [J].
CHUA, LO ;
KANG, SM .
PROCEEDINGS OF THE IEEE, 1976, 64 (02) :209-223
[16]   Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology [J].
Dhamala, M ;
Lai, YC .
PHYSICAL REVIEW E, 1999, 59 (02) :1646-1655
[17]  
Dongping Wang, 2010, 2010 International Conference on Communications, Circuits and Systems (ICCCAS), P832, DOI 10.1109/ICCCAS.2010.5581861
[18]   Coexisting bifurcations in a memristive hyperchaotic oscillator [J].
Fonzin, T. Fozin ;
Srinivasan, K. ;
Kengne, J. ;
Pelap, F. B. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 90 :110-122
[19]   Multistability Control of Hysteresis and Parallel Bifurcation Branches through a Linear Augmentation Scheme [J].
Fozin, T. Fonzin ;
Leutcho, G. D. ;
Kouanou, A. Tchagna ;
Tanekou, G. B. ;
Kengne, R. ;
Kengne, J. ;
Pelap, F. B. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2020, 75 (01) :11-21
[20]   On the dynamics of a simplified canonical Chua's oscillator with smooth hyperbolic sine nonlinearity: Hyperchaos, multistability and multistability control [J].
Fozin, T. Fonzin ;
Ezhilarasu, P. Megavarna ;
Tabekoueng, Z. Njitacke ;
Leutcho, G. D. ;
Kengne, J. ;
Thamilmaran, K. ;
Mezatio, A. B. ;
Pelap, F. B. .
CHAOS, 2019, 29 (11)