GENERATING FUNCTIONS OF EVEN AND ODD GAUSSIAN NUMBERS AND POLYNOMIALS

被引:6
作者
Saba, Nabiha [1 ]
Boussayoud, Ali
Kerada, Mohamed
机构
[1] Mohamed Seddik Ben Yahia Univ, LMAM Lab, Jijel, Algeria
关键词
Symmetric functions; generating functions; odd and even Gaussian (p; q)-numbers; odd and even Gaussian polynomials;
D O I
10.46939/J.Sci.Arts-21.1-a12
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we introduce a new class of generating functions of odd and even Gaussian (p,q)-Fibonacci numbers, Gaussian (p,q)-Lucas numbers, Gaussian (p,q)-Pell numbers, Gaussian (p,q)-Pell Lucas numbers, Gaussian Jacobsthal numbers and Gaussian Jacobsthal Lucas numbers and we will recover the new generating functions of some Gaussian polynomials at odd and even terms. The technique used her is based on the theory of the so called symmetric functions.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 21 条
[1]   GENERALIZATION OF THE EULER TRANSFORMATION OF A FORMAL SERIES [J].
ABDERREZZAK, A .
ADVANCES IN MATHEMATICS, 1994, 103 (02) :180-195
[2]  
Asci M, 2013, NOTES NUMBER THEORY, V19, P25
[3]  
Asci M, 2013, ARS COMBINATORIA, V111, P53
[4]  
BERZSENYI G, 1977, FIBONACCI QUART, V15, P233
[5]  
Boussayoud A., 2014, Int. Electron. J. Pure Appl. Math., V7, P195
[6]  
Boussayoud A., 2020, NONLINEAR STUDIES, V27, P149
[7]   Symmetric functions of the k-Fibonacci and k-Lucas numbers [J].
Boussayoud, Ali ;
Kerada, Mohamed ;
Araci, Serkan ;
Acikgoz, Mehmet .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (03)
[8]  
Chelgham M, 2020, J SCI ARTS, P65
[9]  
Halici H., 2018, PALEST J MATH, V7, P251
[10]  
Halici S., 2016, Ordu Univ. J. Sci. Technol., V6, P8