A multipurpose machine learning approach to predict COVID-19 negative prognosis in SAo Paulo, Brazil

被引:45
作者
Fernandes, Fernando Timoteo [1 ,2 ]
de Oliveira, Tiago Almeida [1 ,3 ]
Teixeira, Cristiane Esteves [1 ,4 ]
de Moraes Batista, Andre Filipe [1 ]
Dalla Costa, Gabriel [5 ]
Porto Chiavegatto Filho, Alexandre Dias [1 ]
机构
[1] Univ Sao Paulo, Sch Publ Hlth, Sao Paulo, SP, Brazil
[2] Fundacentro, Sao Paulo, SP, Brazil
[3] Paraiba State Univ, Stat Dept, Campina Grande, Paraiba, Brazil
[4] Brazilian Natl Canc Inst, Bioinformat & Computat Biol Lab, Rio De Janeiro, RJ, Brazil
[5] BP Beneficencia Portuguesa Sao Paulo, Sao Paulo, SP, Brazil
关键词
INCOME;
D O I
10.1038/s41598-021-82885-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The new coronavirus disease (COVID-19) is a challenge for clinical decision-making and the effective allocation of healthcare resources. An accurate prognostic assessment is necessary to improve survival of patients, especially in developing countries. This study proposes to predict the risk of developing critical conditions in COVID-19 patients by training multipurpose algorithms. We followed a total of 1040 patients with a positive RT-PCR diagnosis for COVID-19 from a large hospital from SAo Paulo, Brazil, from March to June 2020, of which 288 (28%) presented a severe prognosis, i.e. Intensive Care Unit (ICU) admission, use of mechanical ventilation or death. We used routinely-collected laboratory, clinical and demographic data to train five machine learning algorithms (artificial neural networks, extra trees, random forests, catboost, and extreme gradient boosting). We used a random sample of 70% of patients to train the algorithms and 30% were left for performance assessment, simulating new unseen data. In order to assess if the algorithms could capture general severe prognostic patterns, each model was trained by combining two out of three outcomes to predict the other. All algorithms presented very high predictive performance (average AUROC of 0.92, sensitivity of 0.92, and specificity of 0.82). The three most important variables for the multipurpose algorithms were ratio of lymphocyte per C-reactive protein, C-reactive protein and Braden Scale. The results highlight the possibility that machine learning algorithms are able to predict unspecific negative COVID-19 outcomes from routinely-collected data.
引用
收藏
页数:7
相关论文
共 49 条
[1]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[2]   Plasma C-Reactive Protein Levels Are Associated With Improved Outcome in ARDS [J].
Bajwa, Ednan K. ;
Khan, Uzma A. ;
Januzzi, James L. ;
Gong, Michelle N. ;
Thompson, Taylor ;
Christiani, David C. .
CHEST, 2009, 136 (02) :471-480
[3]  
Batista A.F.M., 2020, COVID-19 diagnosis prediction in emergency care patients: a machine learning approach, DOI 10.1101/2020.04.04.20052092
[4]  
Bishop C.M., 1995, Neural Networks for Pattern Recognition (Advanced Texts inEconometrics(Paperback)): Bishop, DOI DOI 10.1201/9781420050646.PTB6
[5]   The COVID-19 Pandemic: Effects on Low- and Middle-Income Countries [J].
Bong, Choon-Looi ;
Brasher, Christopher ;
Chikumba, Edson ;
McDougall, Robert ;
Mellin-Olsen, Jannicke ;
Enright, Angela .
ANESTHESIA AND ANALGESIA, 2020, 131 (01) :86-92
[6]   Evolution and epidemic spread of SARS-CoV-2 in Brazil [J].
Candido, Darlan S. ;
Claro, Ingra M. ;
de Jesus, Jaqueline G. ;
Souza, William M. ;
Moreira, Filipe R. R. ;
Dellicour, Simon ;
Mellan, Thomas A. ;
du Plessis, Louis ;
Pereira, Rafael H. M. ;
Sales, Flavia C. S. ;
Manuli, Erika R. ;
Theze, Julien ;
Almeida, Luiz ;
Menezes, Mariane T. ;
Voloch, Carolina M. ;
Fumagalli, Marcilio J. ;
Coletti, Thais M. ;
Silva, Camila A. M. ;
Ramundo, Mariana S. ;
Amorim, Mariene R. ;
Hoeltgebaum, Henrique H. ;
Mishra, Swapnil ;
Gill, Mandev S. ;
Carvalho, Luiz M. ;
Buss, Lewis F. ;
Prete Jr, Carlos A. ;
Ashworth, Jordan ;
Nakaya, Helder, I ;
Peixoto, Pedro S. ;
Brady, Oliver J. ;
Nicholls, Samuel M. ;
Tanuri, Amilcar ;
Rossi, Atila D. ;
Braga, Carlos K., V ;
Gerber, Alexandra L. ;
Guimaraes, Ana Paula de C. ;
Gaburo Jr, Nelson ;
Alencar, Cecila Salete ;
Ferreira, Alessandro C. S. ;
Lima, Cristiano X. ;
Levi, Jose Eduardo ;
Granato, Celso ;
Ferreira, Giulia M. ;
Francisco Jr, Ronaldo S. ;
Granja, Fabiana ;
Garcia, Marcia T. ;
Moretti, Maria Luiza ;
Perroud Jr, Mauricio W. ;
Castineiras, Terezinha M. P. P. ;
Lazari, Carolina S. .
SCIENCE, 2020, 369 (6508) :1255-+
[7]   COVID-19: immunopathology and its implications for therapy [J].
Cao, Xuetao .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (05) :269-270
[8]   COVID-19-The Availability of ICU Beds in Brazil during the Onset of Pandemic [J].
Capasso Palamim, Camila Vantini ;
Lima Marson, Fernando Augusto .
ANNALS OF GLOBAL HEALTH, 2020, 86 (01) :1-15
[9]  
Castro MC, 2020, medRxiv, V3, P1, DOI 10.1101/2020.03.30.20047662
[10]  
CDC, 2021, INT CLIN GUID MAN PA