COMPRESSIVE SENSING FOR NEUTROSPHERIC WATER VAPOR TOMOGRAPHY USING GNSS AND INSAR OBSERVATIONS

被引:0
作者
Heublein, Marion [1 ,2 ]
Zhu, Xiao Xiang [1 ,3 ]
Alshawaf, Fadwa [2 ]
Mayer, Michael [4 ]
Bamler, Richard [1 ,3 ]
Hinz, Stefan [2 ]
机构
[1] German Aerosp Ctr DLR, Remote Sensing Technol Inst, Oberpfaffenhofen, Germany
[2] Karlsruhe Inst Technol, Inst Photogrammetry & Remote Sensing, D-76021 Karlsruhe, Germany
[3] Tech Univ Munich, Chair Remote Sensing Technol, D-80290 Munich, Germany
[4] Karlsruhe Inst Technol, Geodet Inst, D-76021 Karlsruhe, Germany
来源
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2015年
关键词
Atmospheric modeling; tomographic reconstruction; Compressive Sensing; GNSS; InSAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the innovative Compressive Sensing (CS) concept for tomographic reconstruction of 3D neutrospheric water vapor fields using data from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). The Precipitable Water Vapor (PWV) input data are derived from simulations of the Weather Research and Forecasting modeling system. We apply a Compressive Sensing based approach for tomographic inversion. Using the Cosine transform, a sparse representation of the water vapor field is obtained. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation: The combination of GNSS and InSAR data shows a significant improvement in 3D water vapor reconstruction; and the CS estimation produces better results than a traditional Tikhonov regularization with.. 2 norm penalty term.
引用
收藏
页码:5268 / 5271
页数:4
相关论文
共 47 条
  • [21] Homogenization of daily precipitable water vapor time series derived from GNSS observations over China
    Zhu, Dantong
    Zhang, Kefei
    Sun, Peng
    Wu, Suqin
    Wan, Moufeng
    ADVANCES IN SPACE RESEARCH, 2023, 72 (05) : 1751 - 1763
  • [22] Evaluation of Precipitable Water Vapor from Five Reanalysis Products with Ground-Based GNSS Observations
    Wang, Shuaimin
    Xu, Tianhe
    Nie, Wenfeng
    Jiang, Chunhua
    Yang, Yuguo
    Fang, Zhenlong
    Li, Mowen
    Zhang, Zhen
    REMOTE SENSING, 2020, 12 (11)
  • [23] Machine Learning-Based Model for Real-Time GNSS Precipitable Water Vapor Sensing
    Zheng, Yuxin
    Lu, Cuixian
    Wu, Zhilu
    Liao, Jianchi
    Zhang, Yushan
    Wang, Qiuyi
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (03)
  • [24] A case study of the "21.7" Henan extremely rainfall event: From the perspective of water vapor monitored with GNSS tomography
    Chen, Xinxin
    Lou, Yidong
    Zhang, Weixing
    Dousa, Jan
    Zhou, Linghao
    Zhou, Yaozong
    ADVANCES IN SPACE RESEARCH, 2025, 75 (02) : 1719 - 1731
  • [25] GNSS-DERIVED PRECIPITABLE WATER VAPOR MODELING USING MACHINE LEARNING METHODS
    Izanlou, S.
    Amerian, Y.
    Mousavi, S. M. Seyed
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 307 - 313
  • [26] Tomographic Reconstruction of Water Vapor Density Fields From the Integration of GNSS Observations and Fengyun-4A Products
    Chen, Biyan
    Tan, Jingshu
    Wang, Wei
    Dai, Wujiao
    Ao, Minsi
    Chen, Chunhua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] Real-Time Retrieval of Precipitable Water Vapor From Galileo Observations by Using the MGEX Network
    Lu, Cuixian
    Feng, Guolong
    Zheng, Yuxin
    Zhang, Keke
    Tan, Han
    Dick, Galina
    Wickert, Jens
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4743 - 4753
  • [28] Integrated GNSS-derived precipitable water vapor and remote sensing data for agricultural drought monitoring and impact analysis
    Pipatsitee, Piyanan
    Ninsawat, Sarawut
    Tripathi, Nitin Kumar
    Shanmugam, Mohanasundaram
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [29] Comparison of the Integral Water Vapor Content of the Atmosphere by Data of the Global Forecast System (GFS) and GNSS Observations (Primorski Krai, Russia)
    A. K. Kishkina
    N. V. Shestakov
    A. N. Bugaets
    L. V. Gonchukov
    O. V. Sokolov
    Water Resources, 2022, 49 : 1082 - 1092
  • [30] Comparison of the Integral Water Vapor Content of the Atmosphere by Data of the Global Forecast System (GFS) and GNSS Observations (Primorski Krai, Russia)
    Kishkina, A. K.
    Shestakov, N., V
    Bugaets, A. N.
    Gonchukov, L., V
    Sokolov, O., V
    WATER RESOURCES, 2022, 49 (06) : 1082 - 1092