Three-body dry abrasive wear properties of 15?5 precipitation hardening stainless steel produced by laser powder bed fusion process

被引:18
|
作者
Ramadas, Harikrishnan [1 ,2 ]
Sarkar, Sagar [2 ]
Nath, Ashish Kumar [2 ]
机构
[1] Indian Inst Technol, Adv Technol Dev Ctr, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
关键词
Additive manufacturing; Laser powder bed fusion; Precipitation hardening; Abrasive wear resistance; Grain size; Stainless steel; HEAT-TREATMENT; FATIGUE LIFE; MICROSTRUCTURE;
D O I
10.1016/j.wear.2021.203623
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Additive manufacturing (AM) has been widely considered as a popular manufacturing technique for the production of specific engineering components by various industries. Among the various AM techniques, laser powder bed fusion process (L-PBF) has the potential to make defect-free parts with good material properties. However, the mechanical properties are greatly dependent on the part quality, and the heat treatment processes they are subjected. The current study compares the abrasive wear resistance property of L-PBF 15-5 Precipitation Hardening (PH) Stainless Steel to that of the conventionally manufactured wrought counterpart in the aged condition (W_H900). The L-PBF parts were tested in as-built (S_AB), solution annealed (S_SA) and aged (S_H900) conditions. The test results showed better wear resistance for the L-PBF specimens as compared to the wrought specimens. The fine grain size of the L-PBF specimens formed a large network of grain boundaries and strengthened the bulk properties. The material volume loss of S_H900 specimens decreased by 21.45% compared to the W_H900 specimens during dry abrasion tests. From the microstructural characterization of the wear surface, micro-cutting and micro-ploughing appeared to be the primary material removal mechanisms, along with some regions showing micro-cracking effect.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On the Microstructure and Electrochemical Properties of Additively Manufactured Duplex Stainless Steels Produced Using Laser-Powder Bed Fusion
    Jiang, D.
    Birbilis, N.
    Hutchinson, C. R.
    Brameld, M.
    CORROSION, 2020, 76 (09) : 871 - 883
  • [42] Wear Behavior of Conventionally and Directly Aged Maraging 18Ni-300 Steel Produced by Laser Powder Bed Fusion
    Bae, Kichang
    Kim, Dohyung
    Lee, Wookjin
    Park, Yongho
    MATERIALS, 2021, 14 (10)
  • [43] Local valence analysis of 316L austenitic stainless steel produced by laser powder bed fusion
    Sato, Kazuhisa
    Takagi, Shunya
    Ichikawa, Satoshi
    Ishimoto, Takuya
    Nakano, Takayoshi
    MATERIALS LETTERS, 2024, 372
  • [44] Influence of Postprocessing on Wear Resistance of Aerospace Steel Parts Produced by Laser Powder Bed Fusion
    Metel, Alexander S.
    Grigoriev, Sergey N.
    Tarasova, Tatiana V.
    Filatova, Anastasia A.
    Sundukov, Sergey K.
    Volosova, Marina A.
    Okunkova, Anna A.
    Melnik, Yury A.
    Podrabinnik, Pavel A.
    TECHNOLOGIES, 2020, 8 (04)
  • [45] Process Parameter Optimisation in Laser Powder Bed Fusion of Duplex Stainless Steel 2205
    Mayoral, N.
    Medina, L.
    Rodriguez-Aparicio, R.
    Diaz, A.
    Alegre, J. M.
    Cuesta, I. I.
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [46] Microstructure-Toughness relationships in 316L stainless steel produced by laser powder bed fusion
    de Sonis, Edouard
    Depinoy, Sylvain
    Giroux, Pierre-Francois
    Maskrot, Hicham
    Wident, Pierre
    Hercher, Olivier
    Villaret, Flore
    Gourgues-Lorenzon, Anne-Francoise
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 877
  • [47] Oxide dispersion strengthened 304 L stainless steel produced by ink jetting and laser powder bed fusion
    Paul, Brian K.
    Lee, Kijoon
    He, Yujuan
    Ghayoor, Milad
    Chang, Chih-hung
    Pasebani, Somayeh
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 193 - 196
  • [48] Stress relief heat treatment and mechanical properties of laser powder bed fusion built 21-6-9 stainless steel
    Edin, E.
    Svahn, F.
    Neikter, M.
    akerfeldt, P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 868
  • [49] Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel
    Heiden, Michael J.
    Jensen, Scott C.
    Koepke, Josh R.
    Saiz, David J.
    Dickens, Sara M.
    Jared, Bradley H.
    MATERIALIA, 2022, 21
  • [50] Comparison of Mechanical and Microstructural Properties of Laser Powder Bed Fusion Produced and Wrought 17-4 PH Stainless Steel: Review
    Kalita, B.
    Jayaganthan, R.
    LASERS IN ENGINEERING, 2023, 55 (1-2) : 21 - 37