The Deeply Understanding of the Self-Healing Mechanism for Self-Healing Behavior of Supramolecular Materials Based on Cyclodextrin-Guest Interactions

被引:7
|
作者
Guo, Kun [1 ,2 ]
Lin, Mu-Song [3 ]
Feng, Jun-Feng [4 ]
Pan, Min [5 ]
Ding, Li-Sheng [1 ]
Li, Bang-Jing [1 ]
Zhang, Sheng [5 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Biol, Key Lab Mt Ecol Restorat & Bioresource Utilizat, Chengdu 610041, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Guangdong Grid Co Ltd, Elect Power Res Inst, Guangzhou 510080, Guangdong, Peoples R China
[4] Southwest Jiaotong Univ, Sch Life Sci & Engn, Chengdu 611756, Peoples R China
[5] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
association constants; host-guest interactions; mechanism; polymer chain mobility; self-healing; HOST-GUEST; MOLECULAR RECOGNITION; POLYMERS; INCLUSION; ADHESION; LIGHT; WATER; COMPLEXES; COMPOSITE; FRICTION;
D O I
10.1002/macp.201600593
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cyclodextrin (CD)-based host-guest interactions are one of the important supramolecular interactions and have been playing significant role in the design of self-healing materials due to high selectivity and dynamic equilibrium. However, a deeper understanding of the self-healing mechanism is still rare, although self-healing materials based on CD-guest interactions have many advantages. This study provides a first step for the fundamental understanding of the influence factors on self-healing behavior of materials containing CD-guest complexes. It is found that the healing motifs are CD-guest interactions. Sufficient polymer chains mobility, a small amount of water, and high inclusion constant (K) of host-guest interactions are also essential to the self-healing process. The threshold of K value is around 10(2) M-1.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nanocapsules for self-healing materials
    Blaiszik, B. J.
    Sottos, N. R.
    White, S. R.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (3-4) : 978 - 986
  • [32] Self-healing electronic materials
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [33] Self-healing reactor materials
    O'Driscoll, C
    CHEMISTRY & INDUSTRY, 2004, (11) : 9 - 9
  • [34] Self-healing in Materials: An Overview
    Hossain, Samiha
    Ravindra, Nuggehalli M.
    TMS 2019 148TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2019, : 1643 - 1661
  • [35] Self-Healing Materials for Ecotribology
    Shi, Shih-Chen
    Huang, Teng-Feng
    MATERIALS, 2017, 10 (01):
  • [36] Self-healing Materials Preface
    Hager, Martin D.
    van der Zwaag, Sybrand
    Schubert, Ulrich S.
    SELF-HEALING MATERIALS, 2016, 273 : V - VI
  • [37] Self-Healing Structural Materials
    An, Seongpil
    Yoon, Sam S.
    Lee, Min Wook
    POLYMERS, 2021, 13 (14)
  • [38] Synthesis of Self-Healing Polyurethane Urea-Based Supramolecular Materials
    Kim, Young Joo
    Huh, Pil Ho
    Kim, Byung Kyu
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (07) : 468 - 474
  • [39] 'Self-healing' materials for aircraft?
    Strothman, J
    INTECH, 2002, 49 (09) : 16 - 16
  • [40] Self-Healing Polymeric Materials
    Li Sichao
    Han Peng
    Xu Huaping
    PROGRESS IN CHEMISTRY, 2012, 24 (07) : 1346 - 1352