Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides

被引:107
作者
Ma, Jiao [1 ,2 ]
Diedrich, Jolene K. [2 ,3 ]
Jungreis, Irwin [4 ,5 ]
Donaldson, Cynthia [2 ]
Vaughan, Joan [2 ]
Kellis, Manolis [4 ,5 ]
Yates, John R., III [2 ,3 ]
Saghatelian, Alan [2 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[2] Salk Inst Biol Studies, Clayton Fdn Labs Peptide Biol, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Physiol Chem, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
[4] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
[5] Broad Inst MIT & Harvard, 7 Cambridge Ctr, Cambridge, MA 02139 USA
关键词
SHOTGUN PROTEOMICS; PEPTIDE; APOPTOSIS; RNA; CORTICOTROPIN; MORPHOGENESIS; TRANSLATION; ACTIVATION; COMPLEXITY; GENOMICS;
D O I
10.1021/acs.analchem.6b00191
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Computational, genomic, and proteomic approaches have been used to discover nonannotated protein coding small open reading frames (smORFs). Some novel smORFs have crucial biological roles in cells and organisms, which motivates the search for additional smORFs. Proteomic smORF discovery methods are advantageous because they detect smORF-encoded polypeptides (SEPs) to validate smORF translation and SEP stability. Because SEPs are shorter and less abundant than average proteins, SEP detection using proteomics faces unique challenges. Here, we optimize several steps in the SEP discovery workflow to improve SEP isolation and identification. These changes have led to the detection of several new human SEPs (novel human genes), improved confidence in the SEP assignments, and enabled quantification of SEPs under different cellular conditions. These improvements will allow faster detection and characterization of new SEPs and smORFs.
引用
收藏
页码:3967 / 3975
页数:9
相关论文
共 44 条
  • [1] A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance
    Anderson, Douglas M.
    Anderson, Kelly M.
    Chang, Chi-Lun
    Makarewich, Catherine A.
    Nelson, Benjamin R.
    McAnally, John R.
    Kasaragod, Prasad
    Shelton, John M.
    Liou, Jen
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. CELL, 2015, 160 (04) : 595 - 606
  • [2] Translation of 5' leaders is pervasive in genes resistant to eIF2 repression
    Andreev, Dmitry E.
    O'Connor, Patrick B. F.
    Fahey, Ciara
    Kenny, Elaine M.
    Terenin, Ilya M.
    Dmitriev, Sergey E.
    Cormican, Paul
    Morris, Derek W.
    Shatsky, Ivan N.
    Baranov, Pavel V.
    [J]. ELIFE, 2015, 4
  • [3] Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq
    Aspden, Julie L.
    Eyre-Walker, Ying Chen
    Philips, Rose J.
    Amin, Unum
    Mumtaz, Muhammad Ali S.
    Brocard, Michele
    Couso, Juan Pablo
    [J]. ELIFE, 2014, 3 : 1 - 19
  • [4] Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation
    Bazzini, Ariel A.
    Johnstone, Timothy G.
    Christiano, Romain
    Mackowiak, Sebastian D.
    Obermayer, Benedikt
    Fleming, Elizabeth S.
    Vejnar, Charles E.
    Lee, Miler T.
    Rajewsky, Nikolaus
    Walther, Tobias C.
    Giraldez, Antonio J.
    [J]. EMBO JOURNAL, 2014, 33 (09) : 981 - 993
  • [5] Bliss M., 1982, The discovery of insulin
  • [6] Bliss M., 2013, The Discovery of Insulin
  • [7] Branca RMM, 2014, NAT METHODS, V11, P59, DOI [10.1038/NMETH.2732, 10.1038/nmeth.2732]
  • [8] Proteogenomics to discover the full coding content of genomes: A computational perspective
    Castellana, Natalie
    Bafna, Vineet
    [J]. JOURNAL OF PROTEOMICS, 2010, 73 (11) : 2124 - 2135
  • [9] Cociorva D., 2007, Curr. Protoc. Bioinformatics, V16, p13.4
  • [10] An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus
    Dahl, Louise D.
    Corydon, Thomas J.
    Rankel, Liina
    Nielsen, Karen Margrethe
    Fuchtbauer, Ernst-Martin
    Knudsen, Charlotte R.
    [J]. CANCER CELL INTERNATIONAL, 2014, 14