Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries

被引:639
作者
Fu, Kun [1 ]
Wang, Yibo [1 ]
Yan, Chaoyi [1 ]
Yao, Yonggang [1 ]
Chen, Yanan [1 ]
Dai, Jiaqi [1 ]
Lacey, Steven [1 ]
Wang, Yanbin [1 ]
Wan, Jiayu [1 ]
Li, Tian [1 ]
Wang, Zhengyang [1 ]
Xu, Yue [1 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
关键词
3D; PERFORMANCE; COMPLEX; ULTRALIGHT; HYDROGELS; LIFEPO4;
D O I
10.1002/adma.201505391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-component 3D-printed lithium-ion batteries are fabricated by printing grapheneoxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2), which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices.
引用
收藏
页码:2587 / +
页数:9
相关论文
共 43 条
  • [1] Mesoscale assembly of chemically modified graphene into complex cellular networks
    Barg, Suelen
    Perez, Felipe Macul
    Ni, Na
    Pereira, Paula do Vale
    Maher, Robert C.
    Garcia-Tunon, Esther
    Eslava, Salvador
    Agnoli, Stefano
    Mattevi, Cecilia
    Saiz, Eduardo
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] High-strength cellular ceramic composites with 3D microarchitecture
    Bauer, Jens
    Hengsbach, Stefan
    Tesari, Iwiza
    Schwaiger, Ruth
    Kraft, Oliver
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (07) : 2453 - 2458
  • [3] The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
    Billiet, Thomas
    Gevaert, Elien
    De Schryver, Thomas
    Cornelissen, Maria
    Dubruel, Peter
    [J]. BIOMATERIALS, 2014, 35 (01) : 49 - 62
  • [4] Toward high performance graphene fibers
    Chen, Li
    He, Yuling
    Chai, Songgang
    Qiang, Hong
    Chen, Feng
    Fu, Qiang
    [J]. NANOSCALE, 2013, 5 (13) : 5809 - 5815
  • [5] 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture
    Chisholm, Greig
    Kitson, Philip J.
    Kirkaldy, Niall D.
    Bloor, Leanne G.
    Cronin, Leroy
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 3026 - 3032
  • [6] Printing and Prototyping of Tissues and Scaffolds
    Derby, Brian
    [J]. SCIENCE, 2012, 338 (6109) : 921 - 926
  • [7] Cosmology - Synchrotron radiation and quantum gravity
    Ellis, J
    Mavromatos, NE
    Nanopoulos, DV
    Sakharov, AS
    [J]. NATURE, 2004, 428 (6981) : 6981 - 386
  • [8] 3D printed microfluidic devices with integrated versatile and reusable electrodes
    Erkal, Jayda L.
    Selimovic, Asmira
    Gross, Bethany C.
    Lockwood, Sarah Y.
    Walton, Eric L.
    McNamara, Stephen
    Martin, R. Scott
    Spence, Dana M.
    [J]. LAB ON A CHIP, 2014, 14 (12) : 2023 - 2032
  • [9] Printing in Three Dimensions with Graphene
    Garcia-Tunon, Esther
    Barg, Suelen
    Franco, Jaime
    Bell, Robert
    Eslava, Salvador
    D'Elia, Eleonora
    Maher, Robert Christopher
    Guitian, Francisco
    Saiz, Eduardo
    [J]. ADVANCED MATERIALS, 2015, 27 (10) : 1688 - +
  • [10] Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
    Gross, Bethany C.
    Erkal, Jayda L.
    Lockwood, Sarah Y.
    Chen, Chengpeng
    Spence, Dana M.
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (07) : 3240 - 3253