From Toda to KdV

被引:5
作者
Bambusi, Dario [1 ]
Kappeler, Thomas [2 ]
Paul, Thierry [3 ,4 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[3] Ecole Normale Super, CNRS, F-75730 Paris 05, France
[4] Ecole Normale Super, Dept Math & Applicat, UMR 8553, F-75730 Paris 05, France
关键词
LATTICE;
D O I
10.1016/j.crma.2009.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From Toda to KdV. We consider the large number of particles limit of a periodic Toda lattice for a family of initial data close to the equilibrium state. We show that each of the two edges of the spectra of the corresponding Jacobi matrices is up to an error, determined by the spectra of two Hill operators, associated to this family. We then show that the spectra of the Jacobi matrices remain almost constant when the matrices evolve along the two limiting KdV equations. Finally we prove that the Toda actions, when appropriately renormalized, converge to the ones of KdV. To cite this article: D. Bambusi et al., C R. Acad. Sci. Paris, Ser. I 347(2009). (C) 2009 Academie des sciences. Publie par Elsevier Masson SAS.
引用
收藏
页码:1025 / 1030
页数:6
相关论文
共 8 条
[1]   On metastability in FPU [J].
Bambusi, D ;
Ponno, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :539-561
[2]  
BAMBUSI D, UNPUB
[3]  
Bloch A, 2003, DUKE MATH J, V117, P157
[4]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[5]   Global Birkhoff coordinates for the periodic Toda lattice [J].
Henrici, Andreas ;
Kappeler, Thomas .
NONLINEARITY, 2008, 21 (12) :2731-2758
[6]  
PAUL T, 1993, ANN I H POINCARE-PHY, V59, P357
[7]  
Toda M., 1989, SPRINGER SERIES SOLI, V20
[8]  
WAYNE C, 2000, INT C DIFF EQ BERL 1, P390