Moment inequalities for U-statistics

被引:28
作者
Adamczak, Radoslaw [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
U-statistics; concentration of measure;
D O I
10.1214/009117906000000476
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present moment inequalities for completely degenerate Banach space valued (generalized) U-statistics of arbitrary order. The estimates involve suprema of empirical processes which, in the real-valued case, can be replaced by simpler norms of the kernel matrix (i.e., norms of some multilinear operators associated with the kernel matrix). As a corollary, we derive tail inequalities for U-statistics with bounded kernels and for some multiple stochastic integrals.
引用
收藏
页码:2288 / 2314
页数:27
相关论文
共 12 条
[1]  
Adamczak R., 2005, B POL ACAD SCI MATH, V53, P221, DOI 10.4064/ba53-2-10
[2]  
Arcones M. A., 1993, J. Theoret. Probab., V6, P101
[3]  
Borell C., 1984, SEMINAR NOTES MULTIP
[4]   Moment inequalities for functions of independent random variables [J].
Boucheron, S ;
Bousquet, O ;
Lugosi, G ;
Massart, P .
ANNALS OF PROBABILITY, 2005, 33 (02) :514-560
[5]  
DELANPENA VH, 1999, DECOUPLING DEPENDENC
[6]   BOUNDS ON THE TAIL PROBABILITY OF U-STATISTICS AND QUADRATIC-FORMS [J].
DELAPENA, VH ;
MONTGOMERYSMITH, SJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 31 (02) :223-227
[7]   The LIL for canonical U-statistics of order 2 [J].
Giné, E ;
Kwapien, S ;
Latala, R ;
Zinn, J .
ANNALS OF PROBABILITY, 2001, 29 (01) :520-557
[8]  
GINE E, 2000, PROGR PROBAB, V47
[9]  
Houdré C, 2003, PROG PROBAB, V56, P55
[10]  
Kwapien S., 1992, RANDOM SERIES STOCHA