Phase diagram and structural properties of a simple model for one-patch particles

被引:39
作者
Giacometti, Achille [1 ]
Lado, Fred [2 ]
Largo, Julio [3 ]
Pastore, Giorgio [4 ,5 ]
Sciortino, Francesco [6 ,7 ]
机构
[1] Univ Venezia, Dipartimento Chim Fis, I-30123 Venice, Italy
[2] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[3] Univ Cantabria, Dept Fis Aplicada, E-39005 Santander, Spain
[4] Univ Trieste, Dept Fis Teor, I-34151 Trieste, Italy
[5] CNR INFM Democritos, I-34151 Trieste, Italy
[6] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[7] Univ Roma La Sapienza, INFM CNR SOFT, I-00185 Rome, Italy
关键词
liquid structure; Monte Carlo methods; phase diagrams; INTEGRAL-EQUATION; ASSOCIATING FLUIDS; LINEAR-MOLECULES; COEXISTENCE; FORCES; WATER;
D O I
10.1063/1.3256002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the thermodynamic and structural properties of a simple, one-patch fluid model using the reference hypernetted-chain (RHNC) integral equation and specialized Monte Carlo simulations. In this model, the interacting particles are hard spheres, each of which carries a single identical, arbitrarily oriented and attractive circular patch on its surface; two spheres attract via a simple square-well potential only if the two patches on the spheres face each other within a specific angular range dictated by the size of the patch. For a ratio of attractive to repulsive surface of 0.8, we construct the RHNC fluid-fluid separation curve and compare with that obtained by Gibbs ensemble and grand canonical Monte Carlo simulations. We find that RHNC provides a quick and highly reliable estimate for the position of the fluid-fluid critical line. In addition, it gives a detailed (though approximate) description of all structural properties and their dependence on patch size.
引用
收藏
页数:13
相关论文
共 46 条
[1]  
[Anonymous], UNDERSTANDING MOL SI
[2]   INABILITY OF THE HYPERNETTED-CHAIN INTEGRAL-EQUATION TO EXHIBIT A SPINODAL LINE [J].
BELLONI, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (10) :8080-8095
[3]   Fully solvable equilibrium self-assembly process: Fine-tuning the clusters size and the connectivity in patchy particle systems [J].
Bianchi, Emanuela ;
Tartaglia, Piero ;
La Nave, Emilia ;
Sciortino, Francesco .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (40) :11765-11769
[4]   Phase diagram of patchy colloids: Towards empty liquids [J].
Bianchi, Emanuela ;
Largo, Julio ;
Tartaglia, Piero ;
Zaccarelli, Emanuela ;
Sciortino, Francesco .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[5]   Generalized mean spherical approximation for a model of water with dipole, quadrupole, and short-range potential of tetrahedral symmetry [J].
Carlevaro, CM ;
Blum, L ;
Vericat, F .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (10) :5198-5215
[6]   PHASE-EQUILIBRIA OF ASSOCIATING FLUIDS CHAIN MOLECULES WITH MULTIPLE BONDING SITES [J].
CHAPMAN, WG ;
JACKSON, G ;
GUBBINS, KE .
MOLECULAR PHYSICS, 1988, 65 (05) :1057-1079
[7]   Phase diagram of complex fluids using an efficient integral equation method - art. no. 204901 [J].
Charpentier, I ;
Jakse, N .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (20)
[8]   Dynamics in the presence of attractive patchy interactions [J].
De Michele, C ;
Gabrielli, S ;
Tartaglia, P ;
Sciortino, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (15) :8064-8079
[9]   Slow dynamics in a primitive tetrahedral network model [J].
De Michele, Cristiano ;
Tartaglia, Piero ;
Sciortino, Francesco .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (20)
[10]   Flory-Huggins model of equilibrium polymerization and phase separation in the Stockmayer fluid [J].
Dudowicz, J ;
Freed, KF ;
Douglas, JF .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4-455024