Equal-norm tight frames with erasures

被引:232
作者
Casazza, PG
Kovacevic, J
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Bell Labs, Lucent Technol, Math Commun Res, Murray Hill, NJ 07974 USA
关键词
frames; robust Internet transmission;
D O I
10.1023/A:1021349819855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Equal-norm tight frames have been shown to be useful for robust data transmission. The losses in the network are modeled as erasures of transmitted frame coefficients. We give the first systematic study of the general class of equal-norm tight frames and their properties. We search for efficient constructions of such frames. We show that the only equal-norm tight frames with the group structure and one or two generators are the generalized harmonic frames. Finally, we give a complete classification of frames in terms of their robustness to erasures.
引用
收藏
页码:387 / 430
页数:44
相关论文
共 27 条
  • [1] Akhiezer N.I., 1966, THEORY LINEAR OPERAT, V1
  • [2] Wavelet periodicity detection algorithms
    Benedetto, JJ
    Pfander, GE
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VI, 1998, 3458 : 48 - 55
  • [3] BENEDETTO JJ, 1995, P SOC PHOTO-OPT INS, V2569, P512, DOI 10.1117/12.217606
  • [4] Frame-theoretic analysis of oversampled filter banks
    Bolcskei, H
    Hlawatsch, F
    Feichtinger, HG
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3256 - 3268
  • [5] BOLCSKEI H, 2001, GEOMETRICALLY UNIFOR
  • [6] Modern tools for Weyl-Heisenberg (Gabor) frame theory
    Casazza, PG
    [J]. ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 115, 2001, 115 : 1 - 127
  • [7] The art of frame theory
    Casazza, PG
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02): : 129 - 201
  • [8] Oversampled filter banks
    Cvetkovic, Z
    Vetterli, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) : 1245 - 1255
  • [9] THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS
    DAUBECHIES, I
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) : 961 - 1005
  • [10] Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350