On the archimedean kernels of function rings in pointfree topology

被引:0
|
作者
Banaschewski, B.
Bhattacharjee, P.
Walters-Wayland, J.
机构
关键词
Frame; Pointfree topology; l-Ring; Archimedean kernel; Continuous real-valued function; Realcomplete;
D O I
10.1016/j.topol.2015.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article explores for which function rings A on a frame L all the archimedean kernels of A are determined by the frame homomorphisms from L. It turns out that, for suitable A, this property is equivalent to three different conditions concerning the relation between A and RL, the l-ring of all continuous real-valued functions on L. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 38 条
  • [31] Concerning some variants of C-embedding in pointfree topology
    Dube, Themba
    Matlabyane, Mack
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2307 - 2321
  • [32] Pointfree topology version of image of real-valued continuous functions
    Feizabadi, A. Karimi
    Estaji, A. A.
    Sarpoushi, M. Robat
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2018, 9 (01) : 59 - 75
  • [33] ON QUASI-NORMALITY OF FUNCTION RINGS
    Dube, Themba
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 157 - 179
  • [34] CONCERNING THE SUMMAND INTERSECTION PROPERTY IN FUNCTION RINGS
    Dube, Themba
    Ighedo, Oghenetega
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (03): : 1029 - 1049
  • [35] Pulling and pushing certain ideals in function rings
    Dube, Themba
    Stephen, Dorca Nyamusi
    TOPOLOGY AND ITS APPLICATIONS, 2022, 309
  • [36] ON LATTICES OF z-IDEALS OF FUNCTION RINGS
    Dube, Themba
    Ighedo, Oghenetega
    MATHEMATICA SLOVACA, 2018, 68 (02) : 271 - 284
  • [37] Two Functors Induced by Certain Ideals of Function Rings
    Dube, Themba
    Ighedo, Oghenetega
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (04) : 663 - 681
  • [38] Two Functors Induced by Certain Ideals of Function Rings
    Themba Dube
    Oghenetega Ighedo
    Applied Categorical Structures, 2014, 22 : 663 - 681