Coupled-cluster impurity solvers for dynamical mean-field theory

被引:39
|
作者
Zhu, Tianyu [1 ]
Jimenez-Hoyos, Carlos A. [2 ]
McClain, James [1 ]
Berkelbach, Timothy C. [3 ,4 ]
Chan, Garnet Kin-Lic [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Wesleyan Univ, Dept Chem, Middletown, CT 06457 USA
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; RENORMALIZATION-GROUP; MOTT TRANSITION; SYSTEMS; MODEL; SHELL; STATE;
D O I
10.1103/PhysRevB.100.115154
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT) and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and double excitations (CCSD) for the density of states and self-energies of cluster impurity problems in the one and two-dimensional Hubbard models. Comparison to exact diagonalization shows that CCSD produces accurate density of states and self-energies at a variety of values of U/t and filling fractions. However, the low cost allows for the use of many bath sites, which we define by a discretization of the hybridization directly on the real frequency axis. We observe convergence of dynamical quantities using approximately 30 bath sites per impurity site, with our largest 4-site cluster DMFT calculation using 120 bath sites. We suggest that coupled-cluster impurity solvers will be attractive in ab initio formulations of dynamical mean-field theory.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Mean-field dynamical density functional theory
    Dzubiella, J
    Likos, CN
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (06) : L147 - L154
  • [32] Dynamical mean-field theory for doped antiferromagnets
    Fleck, M
    Liechtenstein, AI
    Oles, AM
    Hedin, L
    Anisimov, VI
    PHYSICAL REVIEW LETTERS, 1998, 80 (11) : 2393 - 2396
  • [33] Dynamical variational Monte Carlo as a quantum impurity solver: Application to cluster dynamical mean field theory
    Rosenberg, P.
    Senechal, D.
    Tremblay, A. -m. s.
    Charlebois, M.
    PHYSICAL REVIEW B, 2023, 108 (24)
  • [34] Fictive-impurity approach to dynamical mean-field theory: A strong-coupling investigation
    Fuhrmann, A.
    Okamoto, S.
    Monien, H.
    Millis, A. J.
    PHYSICAL REVIEW B, 2007, 75 (20)
  • [35] Exotic Cluster Structures in the Mean-Field Theory
    Maruhn, J. A.
    FISSION AND PROPERTIES OF NEUTRON-RICH NUCLEI, 2018, : 313 - 320
  • [36] Multiconfiguration time-dependent Hartree impurity solver for nonequilibrium dynamical mean-field theory
    Balzer, Karsten
    Li, Zheng
    Vendrell, Oriol
    Eckstein, Martin
    PHYSICAL REVIEW B, 2015, 91 (04)
  • [37] Imaginary-Time Matrix Product State Impurity Solver for Dynamical Mean-Field Theory
    Wolf, F. Alexander
    Go, Ara
    McCulloch, Ian P.
    Millis, Andrew J.
    Schollwoeck, Ulrich
    PHYSICAL REVIEW X, 2015, 5 (04):
  • [38] Exotic cluster structures in the mean-field theory
    Klatt, M. A.
    Ichikawa, T.
    Iida, K.
    Itagaki, N.
    Maruhn, J. A.
    Matsuyanagi, K.
    Mecke, K.
    Ohkubo, S.
    Reinhard, P-G
    Schuetrumpf, B.
    INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEAR STRUCTURE FROM NUCLEONS (ENSFN 2012), 2013, 445
  • [39] Antiferromagnetism and d-wave superconductivity in cuprates:: A cluster dynamical mean-field theory
    Lichtenstein, AI
    Katsnelson, MI
    PHYSICAL REVIEW B, 2000, 62 (14) : R9283 - R9286
  • [40] Intrinsic cluster-shaped density waves in cellular dynamical mean-field theory
    Verret, S.
    Roy, J.
    Foley, A.
    Charlebois, M.
    Senechal, D.
    Tremblay, A-M S.
    PHYSICAL REVIEW B, 2019, 100 (22)