Coupled-cluster impurity solvers for dynamical mean-field theory

被引:39
|
作者
Zhu, Tianyu [1 ]
Jimenez-Hoyos, Carlos A. [2 ]
McClain, James [1 ]
Berkelbach, Timothy C. [3 ,4 ]
Chan, Garnet Kin-Lic [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Wesleyan Univ, Dept Chem, Middletown, CT 06457 USA
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; RENORMALIZATION-GROUP; MOTT TRANSITION; SYSTEMS; MODEL; SHELL; STATE;
D O I
10.1103/PhysRevB.100.115154
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT) and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and double excitations (CCSD) for the density of states and self-energies of cluster impurity problems in the one and two-dimensional Hubbard models. Comparison to exact diagonalization shows that CCSD produces accurate density of states and self-energies at a variety of values of U/t and filling fractions. However, the low cost allows for the use of many bath sites, which we define by a discretization of the hybridization directly on the real frequency axis. We observe convergence of dynamical quantities using approximately 30 bath sites per impurity site, with our largest 4-site cluster DMFT calculation using 120 bath sites. We suggest that coupled-cluster impurity solvers will be attractive in ab initio formulations of dynamical mean-field theory.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Dynamical Mean-Field Theory of Nickelate Superlattices
    Han, M. J.
    Wang, Xin
    Marianetti, C. A.
    Millis, A. J.
    PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [22] Dynamical mean-field theory for molecules and nanostructures
    Turkowski, Volodymyr
    Kabir, Alamgir
    Nayyar, Neha
    Rahman, Talat S.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (11):
  • [23] Dynamical Mean-Field Theory for Quantum Chemistry
    Lin, Nan
    Marianetti, C. A.
    Millis, Andrew J.
    Reichman, David R.
    PHYSICAL REVIEW LETTERS, 2011, 106 (09)
  • [24] Dynamical mean-field theory of stripe ordering
    Lichtenstein, AI
    Fleck, M
    Oles, AM
    Hedin, L
    STRIPES AND RELATED PHENOMENA, 2000, : 101 - 109
  • [25] Dynamical mean-field theory of the small polaron
    Ciuchi, S
    dePasquale, F
    Fratini, S
    Feinberg, D
    PHYSICAL REVIEW B, 1997, 56 (08): : 4494 - 4512
  • [26] Dynamical mean-field theory and aging dynamics
    Altieri, Ada
    Biroli, Giulio
    Cammarota, Chiara
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)
  • [27] Dynamical mean-field theory for correlated electrons
    Vollhardt, Dieter
    ANNALEN DER PHYSIK, 2012, 524 (01) : 1 - 19
  • [28] On the analyticity of solutions in the dynamical mean-field theory
    Pruschke, T
    Metzner, W
    Vollhardt, D
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (42) : 9455 - 9461
  • [29] The radius of convergence of dynamical mean-field theory
    Keiter, H
    Otto, D
    PHYSICA B-CONDENSED MATTER, 2002, 312 : 529 - 530
  • [30] Dynamical Mean-Field Theory of Nickelate Superlattices
    Han, M. J.
    Wang, Xin
    Marianetti, C. A.
    Millis, A. J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (20)