Simplification of Neuro-Fuzzy Models

被引:0
|
作者
Siminski, Krzysztof [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, PL-44100 Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS | 2009年 / 59卷
关键词
neuro-fuzzy system; hierarchical partition; simplification; INFERENCE SYSTEM; IDENTIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The neuro-fuzzy system presented in the paper is a system with parameterized consequences implementing hierarchical partition of the input domain. The regions are described with attributes values. In this system not all attribute values must be used to constitute the region. The attributes of minor importance may be ignored. The results of experiments show that the simplified model have less parameters and can achieve better generalisation ability.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] Hierarchical neuro-fuzzy quadtree models
    de Souza, FJ
    Vellasco, MMR
    Pacheco, MAC
    FUZZY SETS AND SYSTEMS, 2002, 130 (02) : 189 - 205
  • [2] The neuro-fuzzy network synthesis and simplification on precedents in problems of diagnosis and pattern recognition
    Subbotin S.
    Optical Memory and Neural Networks (Information Optics), 2013, 22 (02): : 97 - 103
  • [3] INFGMN - Incremental Neuro-Fuzzy Gaussian mixture network
    Mazzutti, Tiago
    Roisenberg, Mauro
    de Freitas Filho, Paulo Jose
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 89 : 160 - 178
  • [4] Neuro-fuzzy system with weighted attributes
    Siminski, Krzysztof
    SOFT COMPUTING, 2014, 18 (02) : 285 - 297
  • [5] Neuro-fuzzy systems
    Kruse, R
    Nauck, D
    COMPUTATIONAL INTELLIGENCE: SOFT COMPUTING AND FUZZY-NEURO INTEGRATION WITH APPLICATIONS, 1998, 162 : 230 - 259
  • [6] NFL - Free Library for Fuzzy and Neuro-Fuzzy Systems
    Siminski, Krzysztof
    BEYOND DATABASES, ARCHITECTURES AND STRUCTURES (BDAS): PAVING THE ROAD TO SMART DATA PROCESSING AND ANALYSIS, 2019, 1018 : 139 - 150
  • [7] FuBiNFS-fuzzy biclustering neuro-fuzzy system
    Siminski, Krzysztof
    FUZZY SETS AND SYSTEMS, 2022, 438 : 84 - 106
  • [8] Prediction of river flow using hybrid neuro-fuzzy models
    Azad, Armin
    Farzin, Saeed
    Kashi, Hamed
    Sanikhani, Hadi
    Karami, Hojat
    Kisi, Ozgur
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (22)
  • [9] Asphaltene deposition prediction using adaptive neuro-fuzzy models based on laboratory measurements
    Salahshoor, Karim
    Zakeri, Sepide
    Mandavi, Sedigheh
    Kharrat, Riyaz
    Khalifeh, Mahmoud
    FLUID PHASE EQUILIBRIA, 2013, 337 : 89 - 99
  • [10] Water level forecasting using neuro-fuzzy models with local learning
    Phuoc Khac-Tien Nguyen
    Chua, Lloyd Hock-Chye
    Talei, Amin
    Chai, Quek Hiok
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (06): : 1877 - 1887