Stable performance of Li-S battery: Engineering of Li2S smart cathode by reduction of multilayer graphene-embedded 2D-MoS2

被引:20
作者
Han, Joonghee [1 ]
Jang, Hyungil [7 ]
Hoa Thi Bui [2 ,7 ]
Jahn, Marcus [1 ]
Ahn, Doyoung [7 ]
Cho, Keumnam [7 ]
Jun, Byeongsun [3 ,4 ]
Lee, Sang Uck [3 ,4 ]
Sabine, Schwarz [5 ]
Stoeger-Pollach, Michael [5 ]
Whitmore, Karin [5 ]
Sung, Myung-Mo [7 ]
Kutwade, Vishnu [6 ]
Sharma, Ramphal [6 ,7 ]
Han, Sung-Hwan [7 ]
机构
[1] Austrian Inst Technol, Elect Drive Technol Ctr Low Emiss Transport, A-1210 Vienna, Austria
[2] Vietnam Acedamy Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet, Hanoi, Vietnam
[3] Hanyang Univ, Dept Bionano Technol, Ansan 15588, South Korea
[4] Hanyang Univ, Dept Appl Chem, Ansan 15588, South Korea
[5] Vienna Univ Technol, USTEM, Wiedner Hauptstr 8-10-057-02, A-1040 Vienna, Austria
[6] Dr Babasaheb Ambedkar Marathwada Univ, Dept Phys, Aurangabad 431004, Maharashtra, India
[7] Hanyang Univ, Dept Chem, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Li-S batteries; Multilayered graphene; 2D-MoS2; cathode; Sulfur shuttle effects; Li2S cathode;
D O I
10.1016/j.jallcom.2020.158031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur (Li-S) batteries are considered promising candidates for next-generation energy storage devices due to their ultrahigh theoretical gravimetric energy density, cost-effectiveness, and environmental friendliness. However, the application of Li-S batteries remains challenging; mainly due to a lack of understanding of the complex chemical reactions and associated equilibria that occur in a working Li-S system. A new approach preparing graphene-based active cathode materials of Li-S battery with spatially confined lithium sulfides is reported. The starting graphene-embedded 2D-MoS2 was synthesized by a solvothermal method in organic solvents followed by the calcination of trapped organic solvent molecules at 800 degrees C to give graphene single sheets inside the 2D-MoS2 layers with 7 A distance (MoS2-Gr-32.51). Then, it was electrochemically reduced/lithiated at potential 0.01 V vs Li+/Li generating metallic molybdenum and lithium sulfides. As a result, the structure of MoS2 multi-layers collapsed. The graphene multi-layer (MLGraphene) was left behind and shut the lithium sulfides between the layers. The sizes of Li2Sn (n = 4-6) are bigger than the inter-layer distance of ML-Graphene, and the escape of sulfur/sulfides from the cathode into the electrolyte is physically blocked alleviating shuttle effects. The specific capacity of ML-Graphene/lithium sulfides cathode was high of 1209 mAh/g(Mos2-Gr) at 0.1 C (1 C = 670 mA/g). The ML-Graphene exhibited the remarkable lithium intercalation capability, and the theoretical calculation has been carried out to give 2231.4 mAh/g. Such high capacity was hybridized with the theoretical capacity of sulfur (1675 mAh/g), and the ML-Graphene composite with dichalcogenides (2D-MoS2) became a promising platform for the cathode of Li-S batteries. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 60 条
[1]  
Alfano B., 2017, PROCEEDINGS, V1
[2]   Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries [J].
Assegie, Addisu Alemayehu ;
Chung, Cheng-Chu ;
Tsai, Meng-Che ;
Su, Wei-Nien ;
Chen, Chun-Wei ;
Hwang, Bing-Joe .
NANOSCALE, 2019, 11 (06) :2710-2720
[3]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[4]   Formation of Multilayer Graphene Domains with Strong Sulfur-Carbon Interaction and Enhanced Sulfur Reduction Zones for Lithium-Sulfur Battery Cathodes [J].
Beltran, Saul Perez ;
Balbuena, Perla B. .
CHEMSUSCHEM, 2018, 11 (12) :1970-1980
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries [J].
Cengiz, Elif Ceylan ;
Salihoglu, Omer ;
Ozturk, Osman ;
Kocabas, Coskun ;
Demir-Cakan, Rezan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 (1017-1024) :1017-1024
[7]   Nanoengineering to achieve high efficiency practical lithium-sulfur batteries [J].
Cha, Eunho ;
Patel, Mumukshu ;
Bhoyate, Sanket ;
Prasad, Vish ;
Choi, Wonbong .
NANOSCALE HORIZONS, 2020, 5 (05) :808-831
[8]   Ultrathin MoS2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage [J].
Chang, Kun ;
Geng, Dongsheng ;
Li, Xifei ;
Yang, Jinli ;
Tang, Yongji ;
Cai, Mei ;
Li, Ruying ;
Sun, Xueliang .
ADVANCED ENERGY MATERIALS, 2013, 3 (07) :839-844
[9]   Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries [J].
Chen, Kena ;
Cao, Jun ;
Lu, Qiongqiong ;
Wang, Qingrong ;
Yao, Minjie ;
Han, Mingming ;
Niu, Zhiqiang ;
Chen, Jun .
NANO RESEARCH, 2018, 11 (03) :1345-1357
[10]   Membrane and electrode engineering of high-performance lithium-sulfur batteries modified by stereotaxically-constructed graphene [J].
Chen, Xingfa ;
Hu, Shuqi ;
Liu, Yang ;
Ali, Asad ;
Li, Shibo ;
Zhang, Xinyi ;
Li, Xianguo ;
Shen, Pei Kang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834