A unified framework for numerically inverting Laplace transforms

被引:361
作者
Abate, Joseph [1 ]
Whitt, Ward [1 ]
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
Laplace transforms; numerical transform inversion; Fourier-series method; Talbot's method; Gaver-Stehfest algorithm; multi-precision computing; multidimensional Laplace transforms; multidimensional transform inversion;
D O I
10.1287/ijoc.1050.0137
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce and investigate a framework for constructing algorithms to invert Laplace transforms numerically. Given a Laplace transform f of a complex-valued function of a nonnegative real-variable, f, the function f is approximated by a finite linear combination of the transform values; i.e., we use the inversion formula [GRAPHICS] where the weights omega(k) and nodes alpha(k) are complex numbers, which depend on n, but do not depend on the transform f or the time argument t. Many different algorithms can be put into this framework, because it remains to specify the weights and nodes. We examine three one-dimensional inversion routines in this framework: the Gaver-Stehfest algorithm, a version of the Fourier-series method with Euler summation, and a version of the Talbot algorithm, which is based on deforming the contour in the Bromwich inversion integral. We show that these three building blocks can be combined to produce different algorithms for numerically inverting two-dimensional Laplace transforms, again all depending on the single parameter n. We show that it can be advantageous to use different one-dimensional algorithms in the inner and outer loops.
引用
收藏
页码:408 / 421
页数:14
相关论文
共 45 条
  • [1] Asymptotics for M/G/1 low-priority waiting-time tail probabilities
    Abate, J
    Whitt, W
    [J]. QUEUEING SYSTEMS, 1997, 25 (1-4) : 173 - 233
  • [2] Multi-precision laplace transform inversion
    Abate, J
    Valkó, PP
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (05) : 979 - 993
  • [3] Abate J., 1995, ORSA Journal on Computing, V7, P36, DOI 10.1287/ijoc.7.1.36
  • [4] Numerical inversion of multidimensional Laplace transforms by the Laguerre method
    Abate, J
    Choudhury, GL
    Whitt, W
    [J]. PERFORMANCE EVALUATION, 1998, 31 (3-4) : 229 - 243
  • [5] Abate J., 1992, Queueing Systems Theory and Applications, V10, P5, DOI 10.1007/BF01158520
  • [6] Abate J., 1999, COMPUTATIONAL PROBAB, P257
  • [7] [Anonymous], 1997, STOCH MODELS
  • [8] AUDIS E, 2006, POWER ALGORITHMS INV
  • [9] Baker G. A., 1996, ENCY MATH ITS APPL, V59
  • [10] Bingham N. H., 1989, Encyclopedia of Mathematics and Its Applications, V27