Model Studies on the Solid Electrolyte Interphase Formation on Graphite Electrodes in Ethylene Carbonate and Dimethyl Carbonate: Highly Oriented Pyrolytic Graphite

被引:15
作者
Weber, Isabella [1 ,2 ,3 ]
Schnaidt, Johannes [1 ,3 ]
Wang, Bin [2 ]
Diemant, Thomas [2 ]
Behm, R. Juergen [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Ulm Univ, Inst Surface Chem & Catalysis, Albert Einstein Allee 47, D-89081 Ulm, Germany
[3] Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany
来源
CHEMELECTROCHEM | 2019年 / 6卷 / 19期
关键词
model studies; HOPG; SEI formation; ethylene carbonate; dimethyl carbonate; SURFACE-FILM FORMATION; LI-ION BATTERIES; LITHIUM; SEI; ELECTROCHEMISTRY; INTERFACE; CHEMISTRY; ANODE; HOPG; MICROSCOPY;
D O I
10.1002/celc.201900909
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aiming at a deeper understanding of the solid electrolyte interphase (SEI) formation on carbon anodes in lithium-ion batteries, we performed a combined electrochemical and spectroscopic model study using structurally well-defined graphite model electrodes (highly oriented pyrolytic graphite, HOPG) and simplified model electrolytes (ethylene carbonate (EC)+1 M LiPF6 or dimethyl carbonate (DMC)+1 M LiPF6). In cyclic voltammetry measurements, we find initial activation of the reductive electrolyte decomposition at faster scan rates (1 or 10 mV s(-1)), whereas this is not the case at a slower scan rate (0.1 mV s(-1)). This activation effect, which is more pronounced for DMC, is explained by an increase in the HOPG surface area, presumably by electrode exfoliation; it is not observed on surface-defect-rich samples. XPS analysis shows that, regardless of the solvent and the scan rate, the SEI is mainly composed of LiF and only small amounts of solvent and other salt decomposition products.
引用
收藏
页码:4985 / 4997
页数:13
相关论文
共 50 条
[21]   Effects of Electrolyte Solvent Composition on Solid Electrolyte Interphase Properties in Lithium Metal Batteries: Focusing on Ethylene Carbonate to Ethyl Methyl Carbonate Ratios [J].
Nogales, Paul Maldonado ;
Lee, Sangyup ;
Yang, Seunga ;
Jeong, Soon-Ki .
BATTERIES-BASEL, 2024, 10 (06)
[22]   Unambiguous molecular characterization of solid electrolyte interphase species on graphite negative electrodes [J].
Maillard, Julien Florent ;
Demeaux, Julien ;
Mase, Charlotte ;
Gajan, Antonin ;
Tessier, Cecile ;
Bernard, Patrick ;
Afonso, Carlos ;
Giusti, Pierre .
JOURNAL OF POWER SOURCES, 2023, 582
[23]   Role of Catalytic Conversions of Ethylene Carbonate, Water, and HF in Forming the Solid-Electrolyte Interphase of Li-Ion Batteries [J].
Martins, Milena ;
Haering, Dominik ;
Connell, Justin G. ;
Wan, Hao ;
Svane, Katrine L. ;
Genorio, Bostjan ;
Dias Martins, Pedro Farinazzo Bergamo ;
Lopes, Pietro P. ;
Gould, Brian ;
Maglia, Filippo ;
Jung, Roland ;
Stamenkovic, Vojislav ;
Castelli, Ivano E. ;
Markovic, Nenad M. ;
Rossmeisl, Jan ;
Strmcnik, Dusan .
ACS CATALYSIS, 2023, 13 (13) :9289-9301
[24]   Evaluating temperature dependent degradation mechanisms of silicon-graphite electrodes and the effect of fluoroethylene carbonate electrolyte additive [J].
Ha, Yeyoung ;
Finegan, Donal P. ;
Colclasure, Andrew M. ;
Trask, Stephen E. ;
Keyser, Matthew .
ELECTROCHIMICA ACTA, 2021, 394
[25]   Multi-modal characterization methods of solid-electrolyte interphase in silicon-graphite composite electrodes [J].
Huey, Zoey ;
Ha, Yeyoung ;
Frisco, Sarah ;
Norman, Andrew ;
Teeter, Glenn ;
Jiang, Chun-Sheng ;
DeCaluwe, Steven C. .
JOURNAL OF POWER SOURCES, 2023, 564
[26]   Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition [J].
Chae, Seulki ;
Lee, Jeong Beom ;
Lee, Jae Gil ;
Lee, Tae-jin ;
Soon, Jiyong ;
Ryu, Ji Heon ;
Lee, Jin Seok ;
Oh, Seung M. .
JOURNAL OF POWER SOURCES, 2017, 370 :131-137
[27]   Role of Solution Structure in Solid Electrolyte lnterphase Formation on Graphite with LiPF6 in Propylene Carbonate [J].
Nie, Mengyun ;
Abraham, Daniel P. ;
Seo, Daniel M. ;
Chen, Yanjing ;
Bose, Arijit ;
Lucht, Brett L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48) :25381-25389
[28]   Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt [J].
Forestier, Coralie ;
Grugeon, Sylvie ;
Davoisne, Carine ;
Lecocq, Amandine ;
Marlair, Guy ;
Armand, Michel ;
Sannier, Lucas ;
Laruelle, Stephane .
JOURNAL OF POWER SOURCES, 2016, 330 :186-194
[29]   Intercalation behavior of spiro-bipyrrolidinium cation into graphite electrodes from ethylene carbonate [J].
Qi, Jiaxing ;
Gao, Jichao ;
Wang, Ying ;
Yoshio, Masaki ;
Wang, Hongyu .
CHINESE CHEMICAL LETTERS, 2023, 34 (04)
[30]   Abnormal electrode behavior of graphite anode operating with the electrolyte containing vinylene carbonate and ethylene sulfite additives [J].
Zhou, Kai ;
Yang, Haohua ;
Zhou, Jianhua ;
Tian, Yan ;
Guo, Jingwen ;
Yuan, Meihui ;
Liu, Libin ;
Gai, Ligang .
ELECTROCHIMICA ACTA, 2023, 462