The Quasi-circular Mapping Visualization Based on Extending and Reordering Dimensions for Visual Clustering Analysis

被引:0
作者
Huang, Shan [2 ]
Li, Ming [1 ]
Chen, Hao [1 ]
机构
[1] Nanchang Hangkong Univ, Natl Key Lab Image Proc & Pattern Recognit Jiangx, Nanchang 330063, Jiangxi, Peoples R China
[2] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
来源
CLOUD COMPUTING AND SECURITY, PT II | 2018年 / 11064卷
关键词
Quasi-circular mapping visualization; Visual clustering; Multi-dimensional data; RADVIZ;
D O I
10.1007/978-3-030-00009-7_27
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Radial coordinate visualization (RadViz) and Star Coordinates (SC) can effectively map high dimensional data to low dimensional space, owing to which can place an arbitrary number of Dimension Anchors (DAs). Nevertheless, the problem owner is faced with ordering DAs, which is a NP-complete problem and visual results of crowding which hamper clustering analysis. We introduce a new radial layout visualization, called the Quasi-circular mapping visualization (QCMV), to address those problems in this paper. Firstly, QCMV extend the original dimension of datasets by the probability distribution histogram of the dimension and affinity propagation (AP) algorithm. In additional, distributing them on the unit circle by their correlation according to the correlation of the extended dimensions. Then, mapping the dimensions extended and reordered data to integrate a polygon in the Quasi-circular space and visualizing them by the geometric center and area of the polygon in the three dimension. Finally strengthening their visual clustering effect with t-SNE. We also compare the visual clustering results of RadViz, SC and QCMV with two indexes, correct rate and Dunn index on visually analyzing the three datasets. It shows better effect of visual clustering with QCMV.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 34 条
  • [1] Similarity clustering of dimensions for an enhanced visualization of multidimensional data
    Ankerst, M
    Berchtold, S
    Keim, DA
    [J]. IEEE SYMPOSIUM ON INFORMATION VISUALIZATION - PROCEEDINGS, 1998, : 52 - +
  • [2] [Anonymous], VISUALIZATION COMPUT
  • [3] Improved visualization in LCA through the application of cluster heat maps
    Cerdas, Felipe
    Kaluza, Alexander
    Erkisi-Arici, Selin
    Boehme, Stefan
    Herrmann, Christoph
    [J]. 24TH CIRP CONFERENCE ON LIFE CYCLE ENGINEERING, 2017, 61 : 732 - 737
  • [4] Di Caro L, 2010, LECT NOTES ARTIF INT, V6119, P125
  • [5] Dueck D, 2007, IEEE I CONF COMP VIS, P198
  • [6] Dzemyda G., 2013, SOIA, V75, P113, DOI [10.1007/978-1-4419-0236-8_4, DOI 10.1007/978-1-4419-0236-8_4]
  • [7] FIEDLER M, 1973, CZECH MATH J, V23, P298
  • [8] Self-training-based face recognition using semi-supervised linear discriminant analysis and affinity propagation
    Gan, Haitao
    Sang, Nong
    Huang, Rui
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (01) : 1 - 6
  • [9] Heinrich J., 2012, EUROGRAPHICS, V34, P17
  • [10] DNA visual and analytic data mining
    Hoffman, P
    Grinstein, G
    Marx, K
    Grosse, I
    Stanley, E
    [J]. VISUALIZATION '97 - PROCEEDINGS, 1997, : 437 - +