An unsupervised ensemble learning method for nonlinear dynamic state-space models

被引:66
|
作者
Valpola, H [1 ]
Karhunen, J [1 ]
机构
[1] Aalto Univ, Neural Networks Res Ctr, FIN-02015 Espoo, Finland
关键词
D O I
10.1162/089976602760408017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear state-space model. The nonlinear mappings in the model are represented using multilayer perceptron networks. The proposed method is computationally demanding, but it allows the use of higher-dimensional nonlinear latent variable models than other existing approaches. Experiments with chaotic data show that the new method is able to blindly estimate the factors and the dynamic process that generated the data. It clearly outperforms currently available nonlinear prediction techniques in this very difficult test problem.
引用
收藏
页码:2647 / 2692
页数:46
相关论文
共 50 条
  • [1] An ensemble learning approach to nonlinear dynamic blind source separation using state-space models
    Valpola, H
    Honkela, A
    Karhunen, J
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 460 - 465
  • [2] Learning nonlinear state-space models for control
    Raiko, T
    Tornio, M
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 815 - 820
  • [3] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [4] Dynamic state-space models
    Guo, WS
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (02) : 149 - 158
  • [5] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867
  • [6] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [7] Kernel-based learning of stable nonlinear state-space models
    Shakib, M. F.
    Toth, R.
    Pogromsky, A. Y.
    Pavlov, A.
    van de Wouw, N.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2897 - 2902
  • [8] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [9] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [10] Variational learning for switching state-space models
    Ghahramani, Z
    Hinton, GE
    NEURAL COMPUTATION, 2000, 12 (04) : 831 - 864