Memory-Efficient Differentiable Programming for Quantum Optimal Control of Discrete Lattices

被引:2
作者
Wang, Xian [1 ]
Kairys, Paul [2 ]
Narayanan, Sri Hari Krishna [2 ]
Huckelheim, Jan [2 ]
Hovland, Paul [2 ]
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
[2] Argonne Natl Lab, Argonne, IL USA
来源
2022 IEEE/ACM THIRD INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS) | 2022年
基金
美国国家科学基金会;
关键词
GAUGE-THEORIES; DYNAMICS;
D O I
10.1109/QCS56647.2022.00016
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quantum optimal control problems are typically solved by gradient-based algorithms such as GRAPE, which suffer from exponential growth in storage with increasing number of qubits and linear growth in memory requirements with increasing number of time steps. Employing QOC for discrete lattices reveals that these memory requirements are a barrier for simulating large models or long time spans. We employ a non-standard differentiable programming approach that significantly reduces the memory requirements at the cost of a reasonable amount of recomputation. The approach exploits invertibility properties of the unitary matrices to reverse the computation during back-propagation. We utilize QOC software written in the differentiable programming framework JAX that implements this approach, and demonstrate its effectiveness for lattice gauge theory.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 26 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   Simulating lattice gauge theories within quantum technologies [J].
Banuls, Mari Carmen ;
Blatt, Rainer ;
Catani, Jacopo ;
Celi, Alessio ;
Cirac, Juan Ignacio ;
Dalmonte, Marcello ;
Fallani, Leonardo ;
Jansen, Karl ;
Lewenstein, Maciej ;
Montangero, Simone ;
Muschik, Christine A. ;
Reznik, Benni ;
Rico, Enrique ;
Tagliacozzo, Luca ;
Van Acoleyen, Karel ;
Verstraete, Frank ;
Wiese, Uwe-Jens ;
Wingate, Matthew ;
Zakrzewski, Jakub ;
Zoller, Peter .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)
[3]  
Baydin AG, 2018, J MACH LEARN RES, V18
[4]  
Bradbury J., 2018, JAX COMPOSABLE TRANS
[5]   Theory of Trotter Error with Commutator Scaling [J].
Childs, Andrew M. ;
Su, Yuan ;
Tran, Minh C. ;
Wiebe, Nathan ;
Zhu, Shuchen .
PHYSICAL REVIEW X, 2021, 11 (01)
[6]   A different look at the optimal control of the Brockett integrator [J].
D'Alessandro, Domenico ;
Zhu, Zhifei .
INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (01) :191-200
[7]   Quantum simulation [J].
Georgescu, I. M. ;
Ashhab, S. ;
Nori, Franco .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :153-185
[8]   Krotov: A Python']Python implementation of Krotov's method for quantum optimal control [J].
Goerz, Michael H. ;
Basilewitsch, Daniel ;
Gago-Encinas, Fernando ;
Krauss, Matthias G. ;
Horn, Karl P. ;
Reich, Daniel M. ;
Koch, Christiane P. .
SCIPOST PHYSICS, 2019, 7 (06)
[9]  
Griewank Andreas, 2008, Evaluating Derivatives
[10]   Optimal control for the quantum simulation of nuclear dynamics [J].
Holland, Eric T. ;
Wendt, Kyle A. ;
Kravvaris, Konstantinos ;
Wu, Xian ;
Ormand, W. Erich ;
DuBois, Jonathan L. ;
Quaglioni, Sofia ;
Pederiva, Francesco .
PHYSICAL REVIEW A, 2020, 101 (06)