Rational solutions to the Pfaff lattice and Jack polynomials

被引:13
作者
Adler, M [1 ]
Kuznetsov, VB
Van Moerbeke, P
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[3] Catholic Univ Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
D O I
10.1017/S0143385702001025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The finite Pfaff lattice is given by a commuting Lax pair involving, a finite matrix L (zero above the first subdiagonal) and a projection onto sp(N). The lattice admits solutions such that the entries of the matrix L are rational in the time parameters t1, t2,..., after conjugation by a diagonal matrix. The sequence of polynomial tau-functions, solving the problem, belongs to an intriguing chain of subspaces of Schur polynomials, associated to Young diagrams, dual with respect to a finite chain of rectangles. Also, this sequence of tau-functions is given inductively by the action of a fixed vertex operator. As an example, one such sequence is given by Jack polynomials for rectangular Young diagrams, while another chain starts with any two-column Jack polynomial.
引用
收藏
页码:1365 / 1405
页数:41
相关论文
共 10 条
  • [1] Adler M, 2002, DUKE MATH J, V112, P1
  • [2] Pfaff τ-functions
    Adler, M
    Shiota, T
    van Moerbeke, P
    [J]. MATHEMATISCHE ANNALEN, 2002, 322 (03) : 423 - 476
  • [3] Adler M, 1999, INT MATH RES NOTICES, V1999, P569
  • [4] [Anonymous], MATH SCI RES I PUBL
  • [5] EXCITED-STATES OF THE CALOGERO-SUTHERLAND MODEL AND SINGULAR VECTORS OF THE W-N ALGEBRA
    AWATA, H
    MATSUO, Y
    ODAKE, S
    SHIRAISHI, J
    [J]. NUCLEAR PHYSICS B, 1995, 449 (1-2) : 347 - 374
  • [6] DICKEY LA, 1991, SOLITON EQUATIONS IN
  • [7] Kuznetsov V.B., 1999, LONDON MATH SOC LECT, V255, P370
  • [8] KUZNETSOV VB, 1995, RIMS KOKYUROKU, V919, P27
  • [9] Macdonald I. G., 1995, Oxford Classic Texts in the Physical Sciences, V2nd
  • [10] SOME COMBINATORIAL PROPERTIES OF JACK SYMMETRIC FUNCTIONS
    STANLEY, RP
    [J]. ADVANCES IN MATHEMATICS, 1989, 77 (01) : 76 - 115