Optimal dividends under a stochastic interest rate

被引:19
作者
Eisenberg, Julia [1 ]
机构
[1] Vienna Univ Technol, Inst Math Methods Econ, Vienna, Austria
基金
奥地利科学基金会;
关键词
Optimal control; Hamilton-Jacobi-Bellman equation; Vasicek model; Geometric Brownian motion; Interest rate; Short rate; Dividends;
D O I
10.1016/j.insmatheco.2015.10.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider an insurance entity endowed with an initial capital and an income, modelled as a Brownian motion with drift. The discounting factor is modelled as a stochastic process: at first as a geometric Brownian motion, then as an exponential function of an integrated Ornstein-Uhlenbeck process. It is assumed that the insurance company seeks to maximize the cumulated value of expected discounted dividends up to the ruin time. We find an explicit expression for the value function and for the optimal strategy in the first but not in the second case, where one has to switch to the viscosity ansatz. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 9 条
[1]   Optimality results for dividend problems in insurance [J].
Albrecher, Hansjoerg ;
Thonhauser, Stefan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2009, 103 (02) :295-320
[2]  
[Anonymous], 2008, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[3]  
Asmussen S., 1997, N AM ACTUAR J, V20, P1
[4]   Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model [J].
Azcue, P ;
Muler, N .
MATHEMATICAL FINANCE, 2005, 15 (02) :261-308
[5]  
Borodin A.N., 1998, HDB BROWNIAN MOTION
[6]  
Brigo D., 2006, Interest Rate Models-Theory and Practice
[7]  
Eisenberg J., PREPRINT
[8]  
Schmidli H, 2008, PROBAB APPL SER, P1
[9]   OPTIMAL CONSUMPTION FOR GENERAL DIFFUSIONS WITH ABSORBING AND REFLECTING BARRIERS [J].
SHREVE, SE ;
LEHOCZKY, JP ;
GAVER, DP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (01) :55-75