Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection

被引:51
作者
Liao, Hong-Lin [1 ]
Song, Xuehua [1 ]
Tang, Tao [2 ,3 ,4 ]
Zhou, Tao [5 ,6 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211101, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Int Ctr Math, Shenzhen 518055, Peoples R China
[4] BNU HKBU United Int Coll, Div Sci & Technol, Zhuhai 519087, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS, Beijing 100190, Peoples R China
[6] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
molecular beam epitaxial growth; variable-step BDF2 scheme; discrete orthogonal convolution kernels; energy stability; convergence analysis;
D O I
10.1007/s11425-020-1817-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we are concerned with the stability and convergence analysis of the second-order backward difference formula (BDF2) with variable steps for the molecular beam epitaxial model without slope selection. We first show that the variable-step BDF2 scheme is convex and uniquely solvable under a weak time-step constraint. Then we show that it preserves an energy dissipation law if the adjacent time-step ratios satisfy r(k):= tau(k)/tau(k-1) < 3.561. Moreover, with a novel discrete orthogonal convolution kernels argument and some new estimates on the corresponding positive definite quadratic forms, the L-2 norm stability and rigorous error estimates are established, under the same step-ratio constraint that ensures the energy stability, i.e., 0 < r(k) < 3.561. This is known to be the best result in the literature. We finally adopt an adaptive time-stepping strategy to accelerate the computations of the steady state solution and confirm our theoretical findings by numerical examples.
引用
收藏
页码:887 / 902
页数:16
相关论文
共 27 条
[11]   Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models [J].
Gomez, Hector ;
Hughes, Thomas J. R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) :5310-5327
[12]   ARBITRARILY HIGH-ORDER UNCONDITIONALLY ENERGY STABLE SCHEMES FOR THERMODYNAMICALLY CONSISTENT GRADIENT FLOW MODELS [J].
Gong, Yuezheng ;
Zhao, Jia ;
Wang, Qi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01) :B135-B156
[13]   STABILITY OF MULTISTEP-METHODS ON VARIABLE GRIDS [J].
GRIGORIEFF, RD .
NUMERISCHE MATHEMATIK, 1983, 42 (03) :359-377
[14]   ENERGY STABILITY AND ERROR ESTIMATES OF EXPONENTIAL TIME DIFFERENCING SCHEMES FOR THE EPITAXIAL GROWTH MODEL WITHOUT SLOPE SELECTION [J].
Ju, Lili ;
Li, Xiao ;
Qiao, Zhonghua ;
Zhang, Hui .
MATHEMATICS OF COMPUTATION, 2018, 87 (312) :1859-1885
[15]   VARIABLE STEP SIZE MULTISTEP METHODS FOR PARABOLIC PROBLEMS [J].
LEROUX, MN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :725-741
[16]   Thin film epitaxy with or without slope selection [J].
Li, B ;
Liu, JG .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 :713-743
[17]   ANALYSIS OF ADAPTIVE BDF2 SCHEME FOR DIFFUSION EQUATIONS [J].
Liao, Hong-lin ;
Zhang, Zhimin .
MATHEMATICS OF COMPUTATION, 2021, 90 (329) :1207-1226
[18]   An adaptive BDF2 implicit time-stepping method for the phase field crystal model [J].
Liao, Hong-lin ;
Ji, Bingquan ;
Zhang, Luming .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) :649-679
[19]   ON ENERGY STABLE, MAXIMUM-PRINCIPLE PRESERVING, SECOND-ORDER BDF SCHEME WITH VARIABLE STEPS FOR THE ALLEN-CAHN EQUATION [J].
Liao, Hong-lin ;
Tang, Tao ;
Zhou, Tao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (04) :2294-2314
[20]  
Qiao ZH, 2015, MATH COMPUT, V84, P653