Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear

被引:145
作者
Rios-Berrios, Rosimar [1 ]
Torn, Ryan D. [1 ]
机构
[1] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
PREDICTION SCHEME SHIPS; SEA-SURFACE TEMPERATURE; ENVIRONMENTAL HELICITY; RAPID INTENSIFICATION; ENSEMBLE APPROACH; HURRICANE; ATLANTIC; PREDICTABILITY; EVOLUTION; VORTICES;
D O I
10.1175/MWR-D-16-0350.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Although infrequent, tropical cyclones (TCs) can intensify under moderate vertical wind shear (VWS). A potential hypothesis is that other factors-associated with both the TC and its environment-can help offset the effects of VWS and aid intensification. This hypothesis was tested with a large dataset of 6-hourly best tracks and environmental diagnostics for global TCs between 1982 and 2014. Moderate VWS was objectively defined as 4.5-11.0 ms(-1), which represents the 25th-75th percentiles of the global distribution of 200-850-hPa VWS magnitude around TCs. Intensifying events (i.e., unique 6-hourly data points) were compared against steady-state events to determine which TC and environmental characteristics favored intensification under moderate VWS. This comparison showed that intensifying events were significantly stronger, closer to the equator, larger, and moving with a more westward motion than steady-state events. Furthermore, intensifying events moved within environments characterized by warmer sea surface temperatures, greater midtropospheric water vapor, and more easterly VWS than steady-state events. Storm-relative, shear-relative composites suggested that the coupling between water vapor, surface latent heat fluxes, and storm-relative flow asymmetries was conducive for less dry air intrusions and more symmetric rainfall in intensifying events. Last, the comparison showed no systematic differences between environmental wind profiles possibly due to the large temporal variability of VWS.
引用
收藏
页码:1717 / 1738
页数:22
相关论文
共 81 条
[11]   A vortex-based perspective of eastern Pacific tropical cyclone formation [J].
Davis, Christopher ;
Snyder, Chris ;
Didlake, Anthony C., Jr. .
MONTHLY WEATHER REVIEW, 2008, 136 (07) :2461-2477
[12]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[13]   Quadrant Distribution of Tropical Cyclone Inner-Core Kinematics in Relation to Environmental Shear [J].
DeHart, Jennifer C. ;
Houze, Robert A., Jr. ;
Rogers, Robert F. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (07) :2713-2732
[14]  
DeMaria M, 1999, WEATHER FORECAST, V14, P326, DOI 10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO
[15]  
2
[16]  
DEMARIA M, 1994, WEATHER FORECAST, V9, P209, DOI 10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO
[17]  
2
[18]  
DeMaria M, 1996, J ATMOS SCI, V53, P2076, DOI 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO
[19]  
2
[20]  
Emanuel K, 2004, J ATMOS SCI, V61, P843, DOI 10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO