Piezoelectric-silicone structure for vibration energy harvesting: experimental testing and modelling

被引:11
|
作者
Zabek, Daniel [1 ]
Pullins, Rhys [1 ]
Pearson, Matthew [1 ]
Grzebielec, Andrzej [2 ]
Skoczkowski, Tadeusz [2 ]
机构
[1] Cardiff Univ, Sch Engn, Cardiff, Wales
[2] Warsaw Univ Technol, Fac Power & Aeronaut Engn, Warsaw, Poland
关键词
PZT; silicone; composite; energy harvesting; tube; cylinder; rubber cord; PZT; CIRCUITS;
D O I
10.1088/1361-665X/abd964
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Mechanical vibrations from heavy machines, building structures, or the human body can be harvested and directly converted into electrical energy. In this paper, the potential to effectively harvest mechanical vibrations and locally generate electrical energy using a novel piezoelectric-rubber composite structure is explored. Piezoelectric lead zirconate titanate is bonded to silicone rubber to form a cylindrical composite-like energy harvesting device which has the potential to structurally dampen high acceleration forces and generate electrical power. The device was experimentally load tested and an advanced dynamic model was verified against experimental data. While an experimental output power of 57 mu W cm(-3) was obtained, the advanced model further optimises the device geometry. The proposed energy harvesting device generates sufficient electrical power for structural health monitoring and remote sensing applications, while also providing structural damping for low frequency mechanical vibrations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Piezoelectric vibration energy harvesting using strain energy method
    Mohammadi, Saber
    Cheraghi, Kaveh
    Khodayari, Akram
    ENGINEERING RESEARCH EXPRESS, 2019, 1 (01):
  • [32] Experimental analysis of optimized impact interval/vibration period ratio on piezoelectric energy harvesting
    Wei, Sheng
    Hu, Hong
    FERROELECTRICS, 2017, 506 (01) : 136 - 143
  • [33] Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system
    Zhang X.-H.
    Lai Z.-P.
    Wu Z.-H.
    Tan H.-Z.
    Zuo M.
    Fan H.-W.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (01): : 87 - 96
  • [34] Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers
    Blazevic, D.
    Zelenika, S.
    SMART SENSORS, ACTUATORS, AND MEMS VII; AND CYBER PHYSICAL SYSTEMS, 2015, 9517
  • [35] Modelling and experimental study of vertical moving magnetic piezoelectric vibration energy harvester
    Rui X.
    Li Y.
    Liu Y.
    Zheng X.
    Qi L.
    Zeng Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (08): : 215 - 221
  • [36] Energy harvesting from vibration using a piezoelectric membrane
    Ericka, M
    Vasic, D
    Costa, F
    Poulin, G
    Tliba, S
    JOURNAL DE PHYSIQUE IV, 2005, 128 : 187 - 193
  • [37] Multimode vibration damping as a result of piezoelectric energy harvesting
    Shen, Hui
    Zhang, Fengsheng
    Qiu, Jinhao
    Bian, Yixiang
    NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2015, 9446
  • [38] Characterization of Direct Piezoelectric Properties for Vibration Energy Harvesting
    Yoshimura, Takeshi
    Miyabuchi, Hiroki
    Murakami, Syuichi
    Ashida, Atsushi
    Fujimura, Norifumi
    3RD INTERNATIONAL CONGRESS ON CERAMICS (ICC3): ADVANCES IN ELECTRO CERAMICS, 2011, 18
  • [39] On Piezoelectric Energy Harvesting Using a Nonlinear Vibration Absorber
    Puzyrov, Volodymyr
    Awrejcewicz, Jan
    Losyeva, Nataliya
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 443 - 456
  • [40] Enhancement of piezoelectric vibration energy harvesting with auxetic boosters
    Eghbali, Pejman
    Younesian, Davood
    Farhangdoust, Saman
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (02) : 1179 - 1190