Reimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology

被引:12
作者
Bera, Kaustav [1 ,2 ]
Katz, Ian [3 ,4 ]
Madabhushi, Anant [1 ,5 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Maimonides Hosp, Dept Internal Med, Brooklyn, NY 11219 USA
[3] Southern Sun Pathol, Sydney, NSW, Australia
[4] Univ Queensland, Brisbane, Qld, Australia
[5] Louis Stokes Vet Affairs Med Ctr, Cleveland, OH USA
来源
JCO CLINICAL CANCER INFORMATICS | 2020年 / 4卷
关键词
CELL LUNG-CANCER; PROGNOSTIC-FACTOR; FRACTAL DIMENSION; HISTOLOGIC GRADE; PROSTATE-CANCER; CARCINOMA; FEATURES; TUMOR; CLASSIFICATION; CHEMOTHERAPY;
D O I
10.1200/CCI.20.00110
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumor stage and grade, visually assessed by pathologists from evaluation of pathology images in conjunction with radiographic imaging techniques, have been linked to outcome, progression, and survival for a number of cancers. The gold standard of staging in oncology has been the TNM (tumor-node-metastasis) staging system. Though histopathological grading has shown prognostic significance, it is subjective and limited by interobserver variability even among experienced surgical pathologists. Recently, artificial intelligence (AI) approaches have been applied to pathology images toward diagnostic-, prognostic-, and treatment prediction-related tasks in cancer. AI approaches have the potential to overcome the limitations of conventional TNM staging and tumor grading approaches, providing a direct prognostic prediction of disease outcome independent of tumor stage and grade. Broadly speaking, these AI approaches involve extracting patterns from images that are then compared against previously defined disease signatures. These patterns are typically categorized as either (1) handcrafted, which involve domain-inspired attributes, such as nuclear shape, or (2) deep learning (DL)-based representations, which tend to be more abstract. DL approaches have particularly gained considerable popularity because of the minimal domain knowledge needed for training, mostly only requiring annotated examples corresponding to the categories of interest. In this article, we discuss AI approaches for digital pathology, especially as they relate to disease prognosis, prediction of genomic and molecular alterations in the tumor, and prediction of treatment response in oncology. We also discuss some of the potential challenges with validation, interpretability, and reimbursement that must be addressed before widespread clinical deployment. The article concludes with a brief discussion of potential future opportunities in the field of AI for digital pathology and oncology. (C) 2020 by American Society of Clinical Oncology
引用
收藏
页码:1039 / 1050
页数:12
相关论文
共 82 条
[1]   Geospatial immune variability illuminates differential evolution of lung adenocarcinoma [J].
AbdulJabbar, Khalid ;
Raza, Shan E. Ahmed ;
Rosenthal, Rachel ;
Jamal-Hanjani, Mariam ;
Veeriah, Selvaraju ;
Akarca, Ayse ;
Lund, Tom ;
Moore, David A. ;
Salgado, Roberto ;
Al Bakir, Maise ;
Zapata, Luis ;
Hiley, Crispin T. ;
Officer, Leah ;
Sereno, Marco ;
Smith, Claire Rachel ;
Loi, Sherene ;
Hackshaw, Allan ;
Marafioti, Teresa ;
Quezada, Sergio A. ;
McGranahan, Nicholas ;
Le Quesne, John ;
Swanton, Charles ;
Yuan, Yinyin .
NATURE MEDICINE, 2020, 26 (07) :1054-+
[2]   Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer [J].
Ali, H. Raza ;
Dariush, Aliakbar ;
Provenzano, Elena ;
Bardwell, Helen ;
Abraham, Jean E. ;
Iddawela, Mahesh ;
Vallier, Anne-Laure ;
Hiller, Louise ;
Dunn, Janet. A. ;
Bowden, Sarah J. ;
Hickish, Tamas ;
McAdam, Karen ;
Houston, Stephen ;
Irwin, Mike J. ;
Pharoah, Paul D. P. ;
Brenton, James D. ;
Walton, Nicholas A. ;
Earl, Helena M. ;
Caldas, Carlos .
BREAST CANCER RESEARCH, 2016, 18
[3]   Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Nasrin, Shamima ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :605-617
[4]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[5]   Towards Virtual H&E Staining of Hyperspectral Lung Histology Images Using Conditional Generative Adversarial Networks [J].
Bayramoglu, Neslihan ;
Kaakinen, Mika ;
Eklund, Lauri ;
Heikkila, Janne .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :64-71
[6]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[7]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[10]   Computationally Derived Image Signature of Stromal Morphology Is Prognostic of Prostate Cancer Recurrence Following Prostatectomy in African American Patients [J].
Bhargava, Hersh K. ;
Leo, Patrick ;
Elliott, Robin ;
Janowczyk, Andrew ;
Whitney, Jon ;
Gupta, Sanjay ;
Fu, Pingfu ;
Yamoah, Kosj ;
Khani, Francesca ;
Robinson, Brian D. ;
Rebbeck, Timothy R. ;
Feldman, Michael ;
Lal, Priti ;
Madabhushi, Anant .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1915-1923