Full resolution Fourier domain optical coherence tomography

被引:1
|
作者
Khare, Kedar [1 ]
Geetha, Athira [2 ]
Bhattacharya, Shanti [2 ]
机构
[1] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
[2] Indian Inst Technol, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
Fourier domain OCT; sparsity; image reconstruction; discrete cosine transform; THRESHOLDING ALGORITHM; SIGNAL RECONSTRUCTION;
D O I
10.1088/2040-8986/aa6dc0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The complex conjugate ambiguity in Fourier domain optical coherence tomography (FDOCT) is a major roadblock that prevents full-detector resolution for the depth scan in single shot operation for the individual A-scan. Current techniques to eliminate this problem involve changing the experimental set-up, usually complicating the OCT system. In this work we show that the standard FDOCT spectrum data when resampled appropriately can be cast exactly in terms of type-1 discrete cosine transform (DCT). Additionally, a sparse reconstruction method in the DCT domain enables image recovery with full-detector resolution, thus effectively doubling the depth scan resolution. In a realistic simulation study we demonstrate full-detector resolution for a discrete reflective target by successfully resolving closely spaced reflective peaks that cannot be separated using the standard Fourier transform based reconstruction. Experimental results on reflective glass sheet targets further validate the methodology. The results of the proposed technique suggest that full resolution FDOCT systems may be implemented practically without additional hardware costs and system complexity.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Real time and full-range complex fourier domain optical coherence tomography
    Yasuno, Y
    Makita, S
    Endo, T
    Aoki, G
    Itoh, M
    Yatagai, T
    OPTICAL AND QUANTUM ELECTRONICS, 2005, 37 (13-15) : 1157 - 1163
  • [22] High resolution Fourier domain Optical Coherence Tomography at 2 microns for painted objects
    Liang, H.
    Cheung, C. S.
    Daniel, J. M. O.
    Tokurakawa, M.
    Clarkson, W. A.
    Spring, M.
    OPTICS FOR ARTS, ARCHITECTURE, AND ARCHAEOLOGY V, 2015, 9527
  • [23] Effects of scattering on spectral shape and depth resolution in Fourier domain optical coherence tomography
    Wang, X. (wxz26267@siom.ac.cn), 1600, Chinese Optical Society (34):
  • [24] High resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation
    Truong, Steven N.
    Alam, Suhail
    Zawadzki, Robert J.
    Choi, Stacey S.
    Telander, David G.
    Park, Susanna S.
    Werner, John S.
    Morse, Lawrence S.
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2007, 27 (07): : 915 - 925
  • [25] Dispersion compensation in Fourier domain optical coherence tomography
    Al-Saeed, Tarek A.
    Shalaby, Mohamed Y.
    Khalil, Diaa A.
    APPLIED OPTICS, 2014, 53 (29) : 6643 - 6653
  • [26] Polarization sensitive Fourier domain optical coherence tomography
    Zhang, J
    Jung, WY
    Nelson, JS
    Chen, ZP
    Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005, 5690 : 276 - 282
  • [27] Intraretinal Segmentation on Fourier Domain Optical Coherence Tomography
    Huang, Jingjing
    Liu, Xing
    Wu, Zigiang
    Cao, Dan
    Sadda, Srinivas
    ANNALS ACADEMY OF MEDICINE SINGAPORE, 2010, 39 (07) : 518 - 524
  • [28] Research Progress in Fourier Domain Optical Coherence Tomography
    Li Pei
    Yang Shanshan
    Ding Zhihua
    Li Peng
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (02):
  • [29] Speckle suppression in Fourier domain optical coherence tomography by fractional Fourier domain compounding
    Lippok, Norman
    Vanholsbeeck, Frederique
    Nielsen, Poul
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE TECHNIQUES VI, 2013, 8802
  • [30] High-Resolution Fourier-Domain Optical Coherence Tomography Findings in Subretinal Cysticercosis
    Sinha, Subijay
    Takkar, Brijesh
    Venkatesh, Pradeep
    Khanduja, Sumeet
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2012, 32 (03): : 643 - 644