Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: A first-principles study

被引:145
|
作者
Saha, Bivas [1 ,2 ]
Acharya, Jagaran [3 ]
Sands, Timothy D. [4 ,5 ]
Waghmare, Umesh V. [2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
[3] Tribhuvan Univ, Cent Dept Phys, Kathmandu 8212, Nepal
[4] Purdue Univ, Sch Mat Engn, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[5] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
关键词
ab initio calculations; electronic structure; energy gap; Fermi surface; hafnium compounds; Hubbard model; phonon dispersion relations; phonon spectra; scandium compounds; semiconductor superlattices; semiconductor-insulator boundaries; thermal conductivity; thermoelectricity; zirconium compounds; GENERALIZED GRADIENT APPROXIMATION; NITRIDES; METALS;
D O I
10.1063/1.3291117
中图分类号
O59 [应用物理学];
学科分类号
摘要
With a motivation to understand microscopic aspects of ScN, ZrN, and HfN relevant to the thermoelectric properties of nitride metal/semiconductor superlattices, we determine their electronic structure, vibrational spectra and thermal properties using first-principles calculations based on density functional theory with a generalized gradient approximation of the exchange correlation energy. We find a large energy gap in the phonon dispersions of metallic ZrN and HfN, but a gapless phonon spectrum for ScN spanning the same energy range, this suggests that a reduced thermal conductivity, suitable for thermoelectric applications, should arise in superlattices made with ScN and ZrN or ScN and HfN. To obtain an electronic energy band gap of ScN comparable to experiment, we use a Hubbard correction with a parameter U (=3.5 eV). Anomalies in the acoustic branches of the phonon dispersion of ZrN and HfN, manifested as dips in the bands, can be understood through the nesting of Fermi surface determined from our calculations. To connect with transport properties, we have determined effective masses of ScN and determined their dependence on the U parameter. Using the relaxation time approximation in the Boltzmann transport theory, we estimate the temperature dependence of the lattice thermal conductivity and discuss the chemical trends among these nitrides.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] First-principles study on electronic structure and optical properties of In-doped GaN
    Ruan, Xingxiang
    Zhang, Fuchun
    Zhang, Weihu
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2014, 13 (08)
  • [32] First-principles study on the electronic structure and optical properties of CrSi2
    Zhou ShiYun
    Xie Quan
    Yan WanJun
    Chen Qian
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (01): : 46 - 51
  • [33] First-principles study on the electronic structure and the ferromagnetic properties of the organic radical DTDA
    Yao, KL
    Luo, SJ
    Liu, ZL
    PHYSICA B-CONDENSED MATTER, 2003, 325 (1-4) : 380 - 384
  • [34] First-principles study on the electronic structure and optical properties of MgCNi3
    Tan, MQ
    Tao, XM
    Xu, XJ
    He, JH
    Ye, GX
    PHYSICA B-CONDENSED MATTER, 2003, 337 (1-4) : 95 - 101
  • [35] First-Principles Study on the Electronic Structure and Elastic Properties of YCu, DyCu and YAg
    Shi, Y. J.
    Du, Y. L.
    Chen, G.
    Chen, G. L.
    MATERIALS TRANSACTIONS, 2008, 49 (11) : 2480 - 2483
  • [36] Study on electronic structure and optoelectronic properties of indium oxide by first-principles calculations
    Odaka, H
    Iwata, S
    Taga, N
    Ohnishi, S
    Kaneta, Y
    Shigesato, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1997, 36 (9A): : 5551 - 5554
  • [37] First-principles study of electronic structure and optical properties of monolayer defective tellurene
    Li Fa-Yun
    Yang Zhi-Xiong
    Cheng Xue
    Zeng Li-Ying
    Ouyang Fang-Ping
    ACTA PHYSICA SINICA, 2021, 70 (16)
  • [38] First-principles study on the electronic structure and optical properties of CrSi2
    ZHOU ShiYun1
    2 Department of Physics
    Science China(Physics,Mechanics & Astronomy), 2009, (01) : 46 - 51
  • [39] First-principles study of the electronic structure and optical properties of GaN(0001) surface
    Du Yu-Jie
    Chang Ben-Kang
    Zhang Jun-Ju
    Li Biao
    Wang Xiao-Hui
    ACTA PHYSICA SINICA, 2012, 61 (06)
  • [40] First-principles study of electronic structure and thermoelectric properties of CeRhAs and related compounds
    Ishii, F
    Onoue, M
    Oguchi, T
    PHYSICA B-CONDENSED MATTER, 2004, 351 (3-4) : 316 - 318