Brill-Gordan loci, transvectants and an analogue of the Foulkes conjecture

被引:12
作者
Abdesselam, A.
Chipalkatti, J.
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[3] Univ Paris 13, Inst Galilee, CNRS UMR 7539, F-93430 Villetaneuse, France
关键词
coincident root loci; Castelnuovo-Mumford regularity; Schur modules; symmetric plethysm; Feynman diagrams; hypergeometric series; magic squares; COINCIDENT ROOT LOCI; BINARY FORMS; INVARIANT-THEORY; EQUATIONS; PLETHYSM; IDEALS;
D O I
10.1016/j.aim.2006.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hypersurfaces of degree d in the projective space P-n correspond to points of p(N), where N = (d(n+d)) - 1. Now assume d = 2e is even, and let X-(n,X-d) subset of P-N denote the subvariety of two e-fold hyperplanes. We exhibit an upper bound on the Castelnuovo regularity of the ideal of X-(n,X-d), and show that this variety is r-normal for r >= 2. The latter result is representation-theoretic, and says that a certain GL(n+1)-equivariant morphism Sr(S-2e(Cn+1)) -> S-2 (S-re(Cn+1)) is surjective for r >= 2; a statement which is reminiscent of the Foulkes-Howe conjecture. For its proof, we reduce the statement to the case n = 1, and then show that certain transvectants of binary forms are nonzero. The latter part uses explicit calculations with Feynman diagrams and hypergeometric series. For ternary quartics and binary d-ics, we give explicit generators for the defining ideal of X-(n,X-d) expressed in the language of classical invariant theory. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:491 / 520
页数:30
相关论文
共 63 条
[1]  
ABDESSELAM A, 2003, SEM LOTHAR COMBIN, V49
[2]  
ABDESSELAM A, MATHAG0502542
[3]   SCHUR FUNCTORS AND SCHUR COMPLEXES [J].
AKIN, K ;
BUCHSBAUM, DA ;
WEYMAN, J .
ADVANCES IN MATHEMATICS, 1982, 44 (03) :207-278
[4]  
[Anonymous], CONT MATH
[5]  
[Anonymous], 1885, Proc. Lond. Math. Soc., DOI DOI 10.1112/PLMS/S1-17.1.107
[6]  
[Anonymous], 1975, Russ. Math. Surv., DOI DOI 10.1070/RM1975V030N05ABEH001522
[7]  
[Anonymous], 1878, Am. J. Math., DOI DOI 10.2307/2369303
[8]  
[Anonymous], TREATISE THEORY INVA
[9]   ON REPRESENTATIONS OF ROTATION GROUP [J].
BARGMANN, V .
REVIEWS OF MODERN PHYSICS, 1962, 34 (04) :829-&
[10]  
BERGERON F., 1998, Encyclopedia Math. Appl., V67