FELL TOPOLOGIES FOR AF-ALGEBRAS AND THE QUANTUM PROPINQUITY

被引:4
作者
Aguilar, Konrad [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, 901 S Palm Walk, Tempe, AZ 85287 USA
基金
欧盟地平线“2020”;
关键词
Noncommutative metric geometry; quantum metric spaces; Gromov-Hausdorff convergence; Lip-norms; AF-algebras; Jacobson topology; Fell topology; MATRIX ALGEBRAS; METRIC-SPACES; HAUSDORFF; CONVERGE; TORI;
D O I
10.7900/jot.2018jun13.2222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a topology on the ideal space of any C*-inductive limit built by an inverse limit of topologies and produce conditions for when this topology agrees with the Fell topology. With this topology, we impart criteria for when convergence of ideals of an AF-algebra can provide convergence of quotients in the quantum Gromov-Hausdorff propinquity building from previous joint work with Latremoliere. This bestows a continuous map from a class of ideals of the Boca-Mundici AF-algebra equipped with various topologies, including Jacobson and Fell topologies, to the space of quotients equipped with the propinquity topology.
引用
收藏
页码:469 / 514
页数:46
相关论文
共 43 条
[1]  
AGUILAR K., ARXIV161202404MATOA
[2]   Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity [J].
Aguilar, Konrad ;
Latremoliere, Frederic .
STUDIA MATHEMATICA, 2015, 231 (02) :149-193
[3]  
[Anonymous], 1975, INTRO THEORY NUMBERS
[4]  
[Anonymous], 1977, North-Holland Mathematical Library
[5]  
[Anonymous], 2004, MEM AM MATH SOC
[6]  
ARCHBOLD RJ, 1987, J LOND MATH SOC, V36, P524
[7]   THE MINIMAL PRIMAL IDEAL SPACE AND AF-ALGEBRAS [J].
BECKHOFF, F .
ARCHIV DER MATHEMATIK, 1992, 59 (03) :276-282
[8]  
BHAT B. V. R., 1999, FIELDS I MONOGR, V13
[9]   An AF algebra associated with the Farey tessellation [J].
Boca, Florin P. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (05) :975-1000
[10]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195