Continuation of normal doubly symmetric orbits in conservative reversible systems

被引:22
作者
Javier Munoz-Almaraz, Francisco
Freire, Emilio
Galan-Vioque, Jorge
Vanderbauwhede, Andre
机构
[1] Escuela Super Ingenieros Sevilla, Dept Matemat Aplicada 2, Seville 41092, Spain
[2] Univ Cardenal Herrera CEU, Dept Ciencias Fis Matemat & Computac, Alfara Del Patriarca 46115, Spain
[3] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
Hamiltonian and conservative systems; time-reversibility; normal doubly symmetric solutions; periodic solutions; numerical continuation; boundary value problem; N-body problem;
D O I
10.1007/s10569-006-9048-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we introduce the concept of a quasi-submersive mapping between two finite-dimensional spaces, we obtain the main properties of such mappings, and we introduce "normality conditions" under which a particular class of so-called "constrained mappings" are quasi-submersive at their zeros. Our main application is concerned with the continuation properties of normal doubly symmetric orbits in time-reversible systems with one or more first integrals. As examples we study the continuation of the figure-eight and the supereight choreographies in the N-body problem.
引用
收藏
页码:17 / 47
页数:31
相关论文
共 19 条
[1]  
[Anonymous], 2000, AUTO2000 CONTINUATIO
[2]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[3]   Computation of periodic solutions of conservative systems with application to the 3-body problem [J].
Doedel, EJ ;
Paffenroth, RC ;
Keller, HB ;
Dichmann, DJ ;
Galán-Vioque, J ;
Vanderbauwhede, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06) :1353-1381
[4]   On the existence of collisionless equivariant minimizers for the classical n-body problem [J].
Ferrario, DL ;
Terracini, S .
INVENTIONES MATHEMATICAE, 2004, 155 (02) :305-362
[5]   Doubly-symmetric periodic solutions of the spatial restricted three-body problem [J].
Howison, RC ;
Meyer, KR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) :174-197
[6]   The existence of simple choreographies for the N-body problem -: a computer-assisted proof [J].
Kapela, T ;
Zgliczynski, P .
NONLINEARITY, 2003, 16 (06) :1899-1918
[7]  
Keller H.B., 1977, Application of Bifurcation Theory, P359
[8]   Time-reversal symmetry in dynamical systems: A survey [J].
Lamb, JSW ;
Roberts, JAG .
PHYSICA D, 1998, 112 (1-2) :1-39
[9]   FUNCTIONAL DEPENDENCE AND BOUNDARY-VALUE-PROBLEMS WITH FAMILIES OF SOLUTIONS [J].
LOUD, WS ;
VANDERBAUWHEDE, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 47 (03) :444-461
[10]   The family P12 of the three-body problem -: The simplest family of periodic orbits, with twelve symmetries per period [J].
Marchal, C .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 78 (1-4) :279-298