Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients

被引:12
作者
Anceschi, Francesca [1 ]
Polidoro, Sergio [1 ]
Ragusa, Maria Alessandra [2 ,3 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-B, I-41125 Modena, Italy
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 5, I-95125 Catania, Italy
[3] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
关键词
Kolmogorov equations; Moser's estimates; Weak solutions;
D O I
10.1016/j.na.2019.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove L-loc(infinity) estimates for positive solutions to the following degenerate second order partial differential equation of Kolmogorov type with measurable coefficients of the form Sigma(m0)(i,j=1) partial derivative(xi) (a(ij)(x, t)partial derivative(xj) u(x, t) + Sigma(N)(i,j=1)b(ij)x(j)partial derivative(xj)u(x, t) - partial derivative(t) u(x, t) + Sigma(m0)(i=1) b(i)(x, t)partial derivative(i) u(x, t) - Sigma(m0)(i=1) partial derivative x(i)(a(i)(x, t)u(x, t)) + c(x, t)u(x, t) = 0 where (x, t) (x(1),... , x(N), t) = z is a point of R-N(+1), and 1 <= m(0) <= N. (a(ij)) is a uniformly positive symmetric matrix with bounded measurable coefficients, (b(ij)) is a constant matrix. We apply the Moser's iteration method to prove the local boundedness of the solution u under minimal integrability assumption on the coefficients. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 24 条
[1]  
[Anonymous], 1977, GRUNDLEHREN MATH WIS
[2]   On the viscosity solutions of a stochastic differential utility problem [J].
Antonelli, F ;
Pascucci, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (01) :69-87
[3]   Asset pricing with a forward-backward stochastic differential utility [J].
Antonelli, F ;
Barucci, E ;
Mancino, ME .
ECONOMICS LETTERS, 2001, 72 (02) :151-157
[4]   Some results on partial differential equations and Asian options [J].
Barucci, E ;
Polidoro, S ;
Vespri, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (03) :475-497
[5]   On conditional McKean Lagrangian stochastic models [J].
Bossy, Mireille ;
Jabir, Jean-Francois ;
Talay, Denis .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) :319-351
[6]  
Cercignani C., 1988, , International Centre for Mechanical Sciences, P1
[7]   Pointwise estimates for a class of non-homogeneous Kolmogorov equations [J].
Cinti, Chiara ;
Pascucci, Andrea ;
Polidoro, Sergio .
MATHEMATISCHE ANNALEN, 2008, 340 (02) :237-264
[8]  
Desvillettes L, 2001, COMMUN PUR APPL MATH, V54, P1, DOI 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO
[9]  
2-Q
[10]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204