Evolving Bidding Strategies Using Self-Adaptation Genetic Algorithm

被引:1
作者
Soon, Kim Gan [1 ]
Patricia, Anthony [1 ]
Jason, Teo [1 ]
On, Kim Chin [1 ]
机构
[1] Univ Malaysia Sabah, Sch Engn & Informat Technol, Kota Kinabalu, Sabah, Malaysia
来源
2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION | 2009年
关键词
Online Auction; Bidding Strategies; Bidding Agent; Genetic Algorithm; Self-Adaptation;
D O I
10.1109/IUCE.2009.108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the application of self-adaptation genetic algorithm on a flexible and configurable heuristic decision making framework that can tackle the problem of bidding across multiple auctions that apply different protocols (English, Vickrey and Dutch) by using an autonomous agent to search for the most effective strategies (offline). Our study shows that self-adaptation genetic algorithm performance is much better than conventional genetic algorithm. An empirical evaluation on the effectiveness of genetic algorithm and self-adaptation genetic algorithm for searching the most effective strategies in the heuristic decision making framework are discussed in this paper.
引用
收藏
页码:222 / 225
页数:4
相关论文
共 11 条
  • [1] Anthony P, 2002, FRONT ARTIF INTEL AP, V77, P178
  • [2] ANTHONY P, 2003, ACM T INTERNET TECHN, V3, P1
  • [3] ANTHONY P, 2003, THESIS U SOUTHAMPTON
  • [4] Back T., 1992, Proceedings of the 1st European Conference on Artificial Life, P263
  • [5] BEASLEY D, 1993, U COMPUT, V15, P58
  • [6] BEASLEY D, 1993, U COMPUT, V15, P170
  • [7] Parameter control in evolutionary algorithms
    Eiben, AE
    Hinterding, R
    Michalewicz, Z
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) : 124 - 141
  • [8] GAN KS, 2008, 3 INT S INF TECHN 20
  • [9] GAN KS, 2008, 4 INT IASTED C ADV C
  • [10] Schaffer J D., 1987, Proceedings of the Second International Conference on Genetic Algorithms, P36