Noncommutative geometry and quiver algebras

被引:80
作者
Crawley-Boevey, William
Etingof, Pavel
Ginzburg, Victor [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
基金
美国国家科学基金会;
关键词
quiver; noncommutative geometry; double derivations;
D O I
10.1016/j.aim.2006.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new framework for noncommutative differential geometry based on double derivations. This leads to the notion of moment map and of Hamiltonian reduction in noncommutative symplectic geometry. For any smooth associative algebra B, we define its noncommutative cotangent bundle T*B, which is a basic example of noncommutative symplectic manifold. Applying Hamiltonian reduction to noncommutative cotangent bundles gives an interesting class of associative algebras, Pi = Pi(B), that includes preprojective algebras associated with quivers. Our formalism of noncommutative Hamiltonian reduction provides the space Pi/[Pi, Pi] with a Lie algebra structure, analogous to the Poisson bracket on the zero fiber of the moment map. In the special case where Pi is the preprojective algebra associated with a quiver of non-Dynkin type, we give a complete description of the Gerstenhaber algebra structure on the Hochschild cohomology of Pi in terms of the Lie algebra Pi/[Pi, Pi]. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 336
页数:63
相关论文
共 27 条
[1]  
[Anonymous], 1993, DIRAC STRUCTURES INT
[2]   Necklace Lie algebras and noncommutative symplectic geometry [J].
Bocklandt, R ;
Le Bruyn, L .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (01) :141-167
[3]   Periodic algebras which are almost Koszul [J].
Brenner, S ;
Butler, MCR ;
King, AD .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :331-367
[4]   Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities [J].
Crawley-Boevey, W .
COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (04) :548-574
[5]   Geometry of the moment map for representations of quivers [J].
Crawley-Boevey, W .
COMPOSITIO MATHEMATICA, 2001, 126 (03) :257-293
[6]   Noncommutative deformations of Kleinian singularities [J].
Crawley-Boevey, W ;
Holland, MP .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :605-635
[7]   ALGEBRA EXTENSIONS AND NONSINGULARITY [J].
CUNTZ, JC ;
QUILLEN, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :251-289
[8]  
Daletskii Y., 1990, SOVIET MATH DOKL, V40, P422
[9]   On Hochschild cohomology of preprojective algebras, II [J].
Erdmann, K ;
Snashall, N .
JOURNAL OF ALGEBRA, 1998, 205 (02) :413-434
[10]  
Erdmann K, 1998, J ALGEBRA, V205, P391, DOI 10.1006/jabr.1998.7547