Quantum Monte Carlo for atoms, molecules and solids

被引:53
作者
Lester, William A., Jr. [1 ,2 ]
Mitas, Lubos [3 ,4 ]
Hammond, Brian [5 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA
[3] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA
[5] Microsoft Corp, Great Valley Corp Ctr, Malvern, PA 19355 USA
基金
美国国家科学基金会;
关键词
FREE-BASE PORPHIN; WAVE-FUNCTIONS; EXCITED-STATES; ELECTRONIC-STRUCTURE; TRIPLET ETHYLENE; COUPLED-CLUSTER; TRANSITION; ENERGY; PSEUDOPOTENTIALS; EQUATION;
D O I
10.1016/j.cplett.2009.06.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quantum Monte Carlo (QMC) method has become increasingly important for solution of the stationary Schrodinger equation for atoms, molecules and solids. The method has been shown to exhibit high accuracy that scales better with system size than other ab initio methods. Moreover, as typically implemented, QMC takes full advantage of parallel computing systems. These attributes for electronic structure calculations will be described, as well as recent applications that demonstrate the breadth of the QMC approach. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 99 条
[81]   Interpretation of the electronic absorption spectrum of free-base porphin using time-dependent density-functional theory [J].
Sundholm, D .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (10) :2275-2281
[82]   PROOF FOR AN UPPER BOUND IN FIXED-NODE MONTE-CARLO FOR LATTICE FERMIONS [J].
TENHAAF, DFB ;
VANBEMMEL, HJM ;
VANLEEUWEN, JMJ ;
VANSAARLOOS, W ;
CEPERLEY, DM .
PHYSICAL REVIEW B, 1995, 51 (19) :13039-13045
[83]   The quantum Monte Carlo method [J].
Towler, M. D. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (11) :2573-2598
[84]   A practical treatment for the three-body interactions in the transcorrelated variational Monte Carlo method: Application to atoms from lithium to neon [J].
Umezawa, N ;
Tsuneyuki, S ;
Ohno, T ;
Shiraishi, K ;
Chikyow, T .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (22)
[85]   Transcorrelated method for electronic systems coupled with variational Monte Carlo calculation [J].
Umezawa, N ;
Tsuneyuki, S .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (19) :10015-10031
[86]   Alleviation of the fermion-sign problem by optimization of many-body wave functions [J].
Umrigar, C. J. ;
Toulouse, Julien ;
Filippi, Claudia ;
Sorella, S. ;
Hennig, R. G. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[87]   Energy and variance optimization of many-body wave functions [J].
Umrigar, CJ ;
Filippi, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (15)
[88]   FIXED-NODE QUANTUM MONTE-CARLO METHOD FOR LATTICE FERMIONS [J].
VANBEMMEL, HJM ;
TENHAAF, DFB ;
VANSAARLOOS, W ;
VANLEEUWEN, JMJ ;
AN, G .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2442-2445
[89]   LOW-ENERGY ELECTRON-IMPACT SPECTROSCOPY ON ETHYLENE [J].
VANVEEN, EH .
CHEMICAL PHYSICS LETTERS, 1976, 41 (03) :540-543
[90]   INFINITESIMAL DIFFERENTIAL DIFFUSION QUANTUM MONTE-CARLO STUDY OF DIATOMIC VIBRATIONAL FREQUENCIES [J].
VRBIK, J ;
ROTHSTEIN, SM .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :2071-2076