Generative Invertible Networks (GIN): Pathophysiology-Interpretable Feature Mapping and Virtual Patient Generation

被引:9
作者
Chen, Jialei [1 ,2 ]
Xie, Yujia [3 ]
Wang, Kan [1 ,2 ]
Wang, Zih Huei [4 ]
Lahoti, Geet [1 ,2 ]
Zhang, Chuck [1 ,2 ]
Vannan, Mani A. [5 ]
Wang, Ben [1 ,2 ,6 ]
Qian, Zhen [5 ]
机构
[1] Georgia Inst Technol, Georgia Tech Mfg Inst, Atlanta, GA 30332 USA
[2] Georgia Tech, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Tech, Sch Computat Sci & Engn, Atlanta, GA USA
[4] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, Hsinchu, Taiwan
[5] Marcus Heart Valve Ctr, Piedmont Heart Inst, Atlanta, GA 30309 USA
[6] Georgia Tech, Sch Mat Sci & Engn, Atlanta, GA USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I | 2018年 / 11070卷
关键词
Virtual patients; Generative Neural Networks;
D O I
10.1007/978-3-030-00928-1_61
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine learning methods play increasingly important roles in pre-procedural planning for complex surgeries and interventions. Very often, however, researchers find the historical records of emerging surgical techniques, such as the transcatheter aortic valve replacement (TAVR), are highly scarce in quantity. In this paper, we address this challenge by proposing novel generative invertible networks (GIN) to select features and generate high-quality virtual patients that may potentially serve as an additional data source for machine learning. Combining a convolutional neural network (CNN) and generative adversarial networks (GAN), GIN discovers the pathophysiologic meaning of the feature space. Moreover, a test of predicting the surgical outcome directly using the selected features results in a high accuracy of 81.55%, which suggests little pathophysiologic information has been lost while conducting the feature selection. This demonstrates GIN can generate virtual patients not only visually authentic but also pathophysiologically interpretable.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2017, ARXIV170107875
[2]  
[Anonymous], 2016, Deep learning. vol
[3]   Biomechanical implications of the congenital bicuspid aortic valve: A finite element study of aortic root function from in vivo data [J].
Conti, Carlo A. ;
Della Corte, Alessandro ;
Votta, Emiliano ;
Del Viscovo, Luca ;
Bancone, Ciro ;
De Santo, Luca S. ;
Redaelli, Alberto .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2010, 140 (04) :890-U203
[4]  
Donahue J., 2016, ADVERSARIAL FEATURE
[5]  
Greenland S, 2001, STAT MED, V20, P2421
[6]  
Kim HJ, 2000, STAT MED, V19, P335, DOI 10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.3.CO
[7]  
2-Q
[8]   Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing [J].
Qian, Zhen ;
Wang, Kan ;
Liu, Shizhen ;
Zhou, Xiao ;
Rajagopal, Vivek ;
Meduri, Christopher ;
Kauten, James R. ;
Chang, Yung-Hang ;
Wu, Changsheng ;
Zhang, Chuck ;
Wang, Ben ;
Vannan, Mani A. .
JACC-CARDIOVASCULAR IMAGING, 2017, 10 (07) :719-731
[9]   4D XCAT phantom for multimodality imaging research [J].
Segars, W. P. ;
Sturgeon, G. ;
Mendonca, S. ;
Grimes, Jason ;
Tsui, B. M. W. .
MEDICAL PHYSICS, 2010, 37 (09) :4902-4915
[10]   Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J].
Shin, Hoo-Chang ;
Roth, Holger R. ;
Gao, Mingchen ;
Lu, Le ;
Xu, Ziyue ;
Nogues, Isabella ;
Yao, Jianhua ;
Mollura, Daniel ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1285-1298