The Strong Law of Large Numbers for Certain Piecewise-Deterministic Markov Processes with Application to a Gene Expression Model

被引:0
作者
Czapla, Dawid [1 ]
Horbacz, Katarzyna [1 ]
Wojewodka, Hanna [1 ]
机构
[1] Univ Silesia Katowice, Inst Math, Bankowa 14, PL-40007 Katowice, Poland
来源
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017) | 2018年 / 1978卷
关键词
D O I
10.1063/1.5044078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to establish the strong law of large numbers (SLLN) for a subclass of piecewise-deterministic Markov processes (PDMPs). On the way to this result, we provide sufficient conditions for the existence of an exponentially attracting invariant distribution for the Markov chain given by the post-jump locations of a PDMP. Furthermore, we obtain a one-to-one correspondence between invariant measures of such a chain and invariant measures of the PDMP. Finally, we illustrate the applicability of our results for a model of prokaryotic gene expression.
引用
收藏
页数:4
相关论文
共 50 条
[22]   Qualitative properties of certain piecewise deterministic Markov processes [J].
Benaim, Michel ;
Le Borgne, Stephane ;
Malrieu, Florent ;
Zitt, Pierre-Andre .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03) :1040-1075
[23]   Asymptotic expansion and central limit theorem for multiscale piecewise-deterministic Markov processes [J].
Pakdaman, Khashayar ;
Thieullen, Michele ;
Wainrib, Gilles .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (06) :2292-2318
[24]   A new characterization of the jump rate for piecewise-deterministic Markov processes with discrete transitions [J].
Azais, Romain ;
Genadot, Alexandre .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (08) :1812-1829
[25]   Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes [J].
Ben Abdessalem, Anis ;
Azais, Romain ;
Touzet-Cortina, Marie ;
Gegout-Petit, Anne ;
Puiggali, Monique .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2016, 230 (04) :405-416
[26]   Non-Parametric Estimation of the Conditional Distribution of the Interjumping Times for Piecewise-Deterministic Markov Processes [J].
Azais, Romain ;
Dufour, Francois ;
Gegout-Petit, Anne .
SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) :950-969
[27]   Optimal choice among a class of nonparametric estimators of the jump rate for piecewise-deterministic Markov processes [J].
Azais, Romain ;
Muller-Gueudin, Aurelie .
ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02) :3648-3692
[28]   PIECEWISE-DETERMINISTIC MARKOV-PROCESSES - A GENERAL-CLASS OF NON-DIFFUSION STOCHASTIC-MODELS [J].
DAVIS, MHA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1984, 46 (03) :353-388
[29]   STRONG LAW OF LARGE NUMBERS FOR HARMONIZABLE PROCESSES [J].
ROUSSEAUEGELE, J .
ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1979, 15 (02) :175-186
[30]   The strong law of large numbers for random processes [J].
Naumov A.A. .
Moscow University Computational Mathematics and Cybernetics, 2010, 34 (1) :31-36