Si and SiGe Nanowire for Micro-Thermoelectric Generator: A Review of the Current State of the Art

被引:92
作者
Li, You [1 ,2 ]
Wang, Guilei [1 ,2 ,3 ]
Akbari-Saatlu, Mehdi [4 ]
Procek, Marcin [4 ]
Radamson, Henry H. [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Microelect Devices & Integrated Technol, Inst Microelect, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Microelect Inst, Beijing, Peoples R China
[3] Guangdong Greater Bay Area Inst Integrated Circui, Res & Dev Ctr Optoelect Hybrid IC, Guangzhou, Peoples R China
[4] Mid Sweden Univ, Dept Elect Design, Sundsvall, Sweden
来源
FRONTIERS IN MATERIALS | 2021年 / 8卷
基金
中国国家自然科学基金;
关键词
Si; SiGe; nanowire; thermoelectric generator; ZT; heat; THERMAL-CONDUCTIVITY MEASUREMENT; CORE-SHELL NANOWIRES; POWER-FACTOR; TOP-DOWN; SUPERLATTICE NANOWIRES; TRANSPORT-PROPERTIES; SILICON NANOWIRES; SI/GE NANOWIRES; ENERGY; GE;
D O I
10.3389/fmats.2021.611078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In our environment, the large availability of wasted heat has motivated the search for methods to harvest heat. As a reliable way to supply energy, SiGe has been used for thermoelectric generators (TEGs) in space missions for decades. Recently, micro-thermoelectric generators (mu TEG) have been shown to be a promising way to supply energy for the Internet of Things (IoT) by using daily waste heat. Combining the predominant CMOS compatibility with high electric conductivity and low thermal conductivity performance, Si nanowire and SiGe nanowire have been a candidate for mu TEG. This review gives a comprehensive introduction of the Si, SiGe nanowires, and their possibility for mu TEG. The basic thermoelectric principles, materials, structures, fabrication, measurements, and applications are discussed in depth.
引用
收藏
页数:24
相关论文
共 190 条
[1]   Non-contact methods for thermal properties measurement [J].
Abad, B. ;
Borca-Tasciuc, D. -A. ;
Martin-Gonzalez, M. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 :1348-1370
[2]  
Adams A., 2019, BULOVA THERMATRON WA
[3]   Silicon Nanowires for Gas Sensing: A Review [J].
Akbari-Saatlu, Mehdi ;
Procek, Marcin ;
Mattsson, Claes ;
Thungstrom, Goran ;
Nilsson, Hans-Erik ;
Xiong, Wenjuan ;
Xu, Buqing ;
Li, You ;
Radamson, Henry H. .
NANOMATERIALS, 2020, 10 (11) :1-57
[4]  
[Anonymous], 1995, Handbook of Thermoelectrics
[5]   Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials [J].
Bahk, Je-Hyeong ;
Bian, Zhixi ;
Shakouri, Ali .
PHYSICAL REVIEW B, 2013, 87 (07)
[6]   Top-down fabrication and electrical characterization of Si and SiGe nanowires for advanced CMOS technologies [J].
Barraud, S. ;
Previtali, B. ;
Lapras, V ;
Coquand, R. ;
Vizioz, C. ;
Hartmann, J-M ;
Casse, M. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (07)
[7]   Power Approaches for Implantable Medical Devices [J].
Ben Amar, Achraf ;
Kouki, Ammar B. ;
Cao, Hung .
SENSORS, 2015, 15 (11) :28889-28914
[8]   Enhanced Seebeck coefficient in silicon nanowires containing dislocations [J].
Bennett, Nick S. ;
Byrne, Daragh ;
Cowley, Aidan .
APPLIED PHYSICS LETTERS, 2015, 107 (01)
[9]   Measuring thermoelectric transport properties of materials [J].
Borup, Kasper A. ;
de Boor, Johannes ;
Wang, Heng ;
Drymiotis, Fivos ;
Gascoin, Franck ;
Shi, Xun ;
Chen, Lidong ;
Fedorov, Mikhail I. ;
Mueller, Eckhard ;
Iversena, Bo B. ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (02) :423-435
[10]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171