A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries

被引:106
|
作者
Fan, Xiaoping [1 ,4 ]
Tan, Chunlei [1 ,4 ]
Li, Yu [1 ,4 ]
Chen, Zhiqiang [1 ,4 ]
Li, Yahao [2 ,3 ]
Huang, Youguo [1 ,4 ]
Pan, Qichang [1 ,4 ]
Zheng, Fenghua [1 ,4 ]
Wang, Hongqiang [1 ,4 ]
Li, Qingyu [1 ,4 ]
机构
[1] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Guangxi Key Lab Low Carbon Energy Mat, Guilin 541004, Peoples R China
[2] Zhejiang Univ, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China
[4] Guangxi Normal Univ, Guangxi New Energy Ship Battery Engn Technol Res, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Cathode material; LiNi0.5Co0.2Mn0.3O2; Regeneration technology; Reconstructing;
D O I
10.1016/j.jhazmat.2020.124610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g(-1) at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Tang, Xiaodong
    Guo, Qiankun
    Zhou, Miaomiao
    Zhong, Shengwen
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 40 : 278 - 286
  • [2] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Xiaodong Tang
    Qiankun Guo
    Miaomiao Zhou
    Shengwen Zhong
    Chinese Journal of Chemical Engineering, 2021, 40 (12) : 278 - 286
  • [3] Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Zhou, Hongming
    Zhao, Xiuxiu
    Yin, Chengjie
    Li, Jian
    ELECTROCHIMICA ACTA, 2018, 291 : 142 - 150
  • [4] Direct Regeneration of LiNi0.5Co0.2Mn0.3O2 Cathode from Spent Lithium-Ion Batteries by the Molten Salts Method
    Jiang, Guanghui
    Zhang, Yannan
    Meng, Qi
    Zhang, Yingjie
    Dong, Peng
    Zhang, Mingyu
    Yang, Xi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (49) : 18138 - 18147
  • [5] Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries
    Jian Li
    Leshan Hu
    Hongming Zhou
    Lihua Wang
    Bingkun Zhai
    Shengliang Yang
    Pengyu Meng
    Rong Hu
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 17661 - 17669
  • [6] Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries
    Li, Jian
    Hu, Leshan
    Zhou, Hongming
    Wang, Lihua
    Zhai, Bingkun
    Yang, Shengliang
    Meng, Pengyu
    Hu, Rong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (20) : 17661 - 17669
  • [7] Resynthesis and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 from spent cathode material of lithium-ion batteries
    Liu, Pengcheng
    Xiao, Li
    Tang, Yiwei
    Zhu, Yirong
    Chen, Han
    Chen, Yifeng
    VACUUM, 2018, 156 : 317 - 324
  • [8] Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries
    Yue, Ling-Ping
    Lou, Ping
    Xu, Guo-Hua
    Xu, Huiqiang
    Jin, Guoliang
    Li, Long
    Deng, Heming
    Cheng, Qi
    Tang, Shun
    Cao, Yuan-Cheng
    IONICS, 2020, 26 (06) : 2757 - 2761
  • [9] Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries
    Ling-Ping Yue
    Ping Lou
    Guo-Hua Xu
    Huiqiang Xu
    Guoliang Jin
    Long Li
    Heming Deng
    Qi Cheng
    Shun Tang
    Yuan-Cheng Cao
    Ionics, 2020, 26 : 2757 - 2761
  • [10] Research on the facile regeneration of degraded cathode materials from spent LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries
    Yang, Chen
    Hao, Yujia
    Wang, Jiayi
    Zhang, Mingdao
    Song, Li
    Qu, Jiaan
    FRONTIERS IN CHEMISTRY, 2024, 12