Large scale multi-label learning using Gaussian processes

被引:5
作者
Panos, Aristeidis [1 ]
Dellaportas, Petros [1 ,2 ,3 ]
Titsias, Michalis K. [4 ]
机构
[1] UCL, Dept Stat Sci, London, England
[2] Athens Univ Econ & Business, Dept Stat, Athens, Greece
[3] Alan Turing Inst, London, England
[4] Athens Univ Econ & Business, Dept Informat, Athens, Greece
基金
英国工程与自然科学研究理事会;
关键词
Multi-label learning; Gaussian process; Variational inference; Bayesian nonparametrics;
D O I
10.1007/s10994-021-05952-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a Gaussian process latent factor model for multi-label classification that can capture correlations among class labels by using a small set of latent Gaussian process functions. To address computational challenges, when the number of training instances is very large, we introduce several techniques based on variational sparse Gaussian process approximations and stochastic optimization. Specifically, we apply doubly stochastic variational inference that sub-samples data instances and classes which allows us to cope with Big Data. Furthermore, we show it is possible and beneficial to optimize over inducing points, using gradient-based methods, even in very high dimensional input spaces involving up to hundreds of thousands of dimensions. We demonstrate the usefulness of our approach on several real-world large-scale multi-label learning problems.
引用
收藏
页码:965 / 987
页数:23
相关论文
共 58 条
  • [1] Kernels for Vector-Valued Functions: A Review
    Alvarez, Mauricio A.
    Rosasco, Lorenzo
    Lawrence, Neil D.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03): : 195 - 266
  • [2] Alvarez MA, 2011, J MACH LEARN RES, V12, P1459
  • [3] [Anonymous], 2002, Advances in Neural Information Processing Systems
  • [4] Data scarcity, robustness and extreme multi-label classification
    Babbar, Rohit
    Schoelkopf, Bernhard
    [J]. MACHINE LEARNING, 2019, 108 (8-9) : 1329 - 1351
  • [5] DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification
    Babbar, Rohit
    Schoelkopf, Bernhard
    [J]. WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2017, : 721 - 729
  • [6] Bauer M, 2016, ADV NEUR IN, V29
  • [7] Bhatia K, 2015, 29 ANN C NEURAL INFO, V28
  • [8] Bonilla E. V., 2007, P 20 INT C NEUR INF, P153
  • [9] Bui TD, 2017, J MACH LEARN RES, V18
  • [10] Sparse on-line Gaussian processes
    Csató, L
    Opper, M
    [J]. NEURAL COMPUTATION, 2002, 14 (03) : 641 - 668